Total electron temperature derived from quasi-thermal noise spectroscopy in the pristine solar wind from Parker Solar Probe observations

被引:12
作者
Liu, M. [1 ]
Issautier, K. [1 ]
Moncuquet, M. [1 ]
Meyer-Vernet, N. [1 ]
Maksimovic, M. [1 ]
Huang, J. [2 ]
Martinovic, M. M. [1 ,3 ]
Griton, L. [1 ]
Chrysaphi, N. [1 ]
Jagarlamudi, V. K. [4 ]
Bale, S. D. [5 ,6 ]
Pulupa, M. [5 ]
Kasper, J. C. [2 ,7 ]
Stevens, M. L. [7 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, CNRS,LESIA,Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France
[2] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[4] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[7] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA
关键词
solar wind; Sun; heliosphere; corona; methods; data analysis; plasmas; acceleration of particles; MAGNETIC-FLUX ROPES; RADIAL EVOLUTION; COLLISIONLESS MODEL; PARAMETERS; DENSITY; PLASMA; ULYSSES; SWITCHBACKS; VELOCITY; SPEED;
D O I
10.1051/0004-6361/202245450
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We applied the quasi-thermal noise (QTN) method to Parker Solar Probe (PSP) observations to derive the total electron temperature (T-e). We combined a set of encounters to make up a 12-day period of observations around each perihelion from encounter one (E01) to ten (E10), with E08 not included. Here, the heliocentric distance varies from about 13 to 60 solar radii (R-circle dot).Methods. The QTN technique is a reliable tool to yield accurate measurements of the electron parameters in the solar wind. We obtained T-e from the linear fit of the high-frequency part of the QTN spectra acquired by the RFS/FIELDS instrument. Then, we provided the mean radial electron temperature profile, and examined the electron temperature gradients for different solar wind populations (i.e. classified by the proton bulk speed, V-p, and the solar wind mass flux).Results. We find that the total electron temperature decreases with the distance as similar to R-0.66, which is much slower than adiabatic. The extrapolated T-e based on PSP observations is consistent with the exospheric solar wind model prediction at similar to 10 R-circle dot, Helios observations at similar to 0.3 AU, and Wind observations at 1 AU. Also, T-e, extrapolated back to 10 R-circle dot, is almost the same as the Strahl electron temperature, T-s (measured by SPAN-E), which is considered to be closely related to or even almost equal to the coronal electron temperature. Furthermore, the radial T-e profiles in the slower solar wind (or flux tube with larger mass flux) are steeper than those in the faster solar wind (or flux tube with smaller mass flux). The more pronounced anticorrelation of V-p-T-e is observed when the solar wind is slower and located closer to the Sun.
引用
收藏
页数:10
相关论文
共 88 条
[1]   Radial Evolution of Thermal and Suprathermal Electron Populations in the Slow Solar Wind from 0.13 to 0.5 au: Parker Solar Probe Observations [J].
Abraham, Joel B. ;
Owen, Christopher J. ;
Verscharen, Daniel ;
Bakrania, Mayur ;
Stansby, David ;
Wicks, Robert T. ;
Nicolaou, Georgios ;
Whittlesey, Phyllis L. ;
Rueda, Jeffersson A. Agudelo ;
Jeong, Seong-Yeop ;
Bercic, Laura .
ASTROPHYSICAL JOURNAL, 2022, 931 (02)
[2]   Highly structured slow solar wind emerging from an equatorial coronal hole [J].
Bale, S. D. ;
Badman, S. T. ;
Bonnell, J. W. ;
Bowen, T. A. ;
Burgess, D. ;
Case, A. W. ;
Cattell, C. A. ;
Chandran, B. D. G. ;
Chaston, C. C. ;
Chen, C. H. K. ;
Drake, J. F. ;
De Wit, T. Dudok ;
Eastwood, J. P. ;
Ergun, R. E. ;
Farrell, W. M. ;
Fong, C. ;
Goetz, K. ;
Goldstein, M. ;
Goodrich, K. A. ;
Harvey, P. R. ;
Horbury, T. S. ;
Howes, G. G. ;
Kasper, J. C. ;
Kellogg, P. J. ;
Klimchuk, J. A. ;
Korreck, K. E. ;
Krasnoselskikh, V. V. ;
Krucker, S. ;
Laker, R. ;
Larson, D. E. ;
MacDowall, R. J. ;
Maksimovic, M. ;
Malaspina, D. M. ;
Martinez-Oliveros, J. ;
McComas, D. J. ;
Meyer-Vernet, N. ;
Moncuquet, M. ;
Mozer, F. S. ;
Phan, T. D. ;
Pulupa, M. ;
Raouafi, N. E. ;
Salem, C. ;
Stansby, D. ;
Stevens, M. ;
Szabo, A. ;
Velli, M. ;
Woolley, T. ;
Wygant, J. R. .
NATURE, 2019, 576 (7786) :237-+
[3]   The FIELDS Instrument Suite for Solar Probe Plus [J].
Bale, S. D. ;
Goetz, K. ;
Harvey, P. R. ;
Turin, P. ;
Bonnell, J. W. ;
Dudok de Wit, T. ;
Ergun, R. E. ;
MacDowall, R. J. ;
Pulupa, M. ;
Andre, M. ;
Bolton, M. ;
Bougeret, J. -L. ;
Bowen, T. A. ;
Burgess, D. ;
Cattell, C. A. ;
Chandran, B. D. G. ;
Chaston, C. C. ;
Chen, C. H. K. ;
Choi, M. K. ;
Connerney, J. E. ;
Cranmer, S. ;
Diaz-Aguado, M. ;
Donakowski, W. ;
Drake, J. F. ;
Farrell, W. M. ;
Fergeau, P. ;
Fermin, J. ;
Fischer, J. ;
Fox, N. ;
Glaser, D. ;
Goldstein, M. ;
Gordon, D. ;
Hanson, E. ;
Harris, S. E. ;
Hayes, L. M. ;
Hinze, J. J. ;
Hollweg, J. V. ;
Horbury, T. S. ;
Howard, R. A. ;
Hoxie, V. ;
Jannet, G. ;
Karlsson, M. ;
Kasper, J. C. ;
Kellogg, P. J. ;
Kien, M. ;
Klimchuk, J. A. ;
Krasnoselskikh, V. V. ;
Krucker, S. ;
Lynch, J. J. ;
Maksimovic, M. .
SPACE SCIENCE REVIEWS, 2016, 204 (1-4) :49-82
[4]   Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data [J].
Bemporad, A. .
ASTROPHYSICAL JOURNAL, 2017, 846 (01)
[5]   Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations [J].
Bercic, Laura ;
Larson, Davin ;
Whittlesey, Phyllis ;
Maksimovic, Milan ;
Badman, Samuel T. ;
Landi, Simone ;
Matteini, Lorenzo ;
Bale, Stuart D. ;
Bonnell, John W. ;
Case, Anthony W. ;
de Wit, Thierry Dudok ;
Goetz, Keith ;
Harvey, Peter R. ;
Kasper, Justin C. ;
Korreck, Kelly E. ;
Livi, Roberto ;
MacDowall, Robert J. ;
Malaspina, David M. ;
Pulupa, Marc ;
Stevens, Michael L. .
ASTROPHYSICAL JOURNAL, 2020, 892 (02)
[6]   SPECTRA OF THE NONTHERMAL RADIO RADIATION FROM THE GALACTIC POLAR REGIONS [J].
CANE, HV .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1979, 189 (02) :465-478
[7]   The Solar Probe Cup on the Parker Solar Probe [J].
Case, A. W. ;
Kasper, Justin C. ;
Stevens, Michael L. ;
Korreck, Kelly E. ;
Paulson, Kristoff ;
Daigneau, Peter ;
Caldwell, Dave ;
Freeman, Mark ;
Henry, Thayne ;
Klingensmith, Brianna ;
Bookbinder, J. A. ;
Robinson, Miles ;
Berg, Peter ;
Tiu, Chris ;
Wright, K. H., Jr. ;
Reinhart, Matthew J. ;
Curtis, David ;
Ludlam, Michael ;
Larson, Davin ;
Whittlesey, Phyllis ;
Livi, Roberto ;
Klein, Kristopher G. ;
Martinovic, Mihailo M. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
[8]   ELECTROSTATIC NOISE IN NON-MAXWELLIAN PLASMAS - GENERIC PROPERTIES AND KAPPA DISTRIBUTIONS [J].
CHATEAU, YF ;
MEYERVERNET, N .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A4) :5825-5836
[9]   Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations [J].
Chen, Yu ;
Hu, Qiang ;
Zhao, Lingling ;
Kasper, Justin C. ;
Huang, Jia .
ASTROPHYSICAL JOURNAL, 2021, 914 (02)
[10]   Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade [J].
de Wit, Thierry Dudok ;
Krasnoselskikh, Vladimir V. ;
Bale, Stuart D. ;
Bonnell, John W. ;
Bowen, Trevor A. ;
Chen, Christopher H. K. ;
Froment, Clara ;
Goetz, Keith ;
Harvey, Peter R. ;
Jagarlamudi, Vamsee Krishna ;
Larosa, Andrea ;
MacDowall, Robert J. ;
Malaspina, David M. ;
Matthaeus, William H. ;
Pulupa, Marc ;
Velli, Marco ;
Whittlesey, Phyllis L. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)