SOME RECURRENT MOTIONS OF NAVIER-STOKES EQUATIONS WITH CORIOLIS FORCE

被引:0
作者
Chen, Feng [1 ,2 ]
Jiang, Xiaomeng [3 ]
Li, Yong [3 ,4 ,5 ]
机构
[1] Changchun Univ, Sch Sci, Changchun 130022, Peoples R China
[2] Changchun Univ, Jilin Prov Key Lab Human Hlth Status Identificat &, Changchun 130022, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[4] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[5] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 08期
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; coriolis force; almost automorphic solution; birkhoff recurrent solution; poisson stable solution; TIME-PERIODIC SOLUTIONS; STABLE-SOLUTIONS; REGULARITY; EXISTENCE; STABILITY; EULER;
D O I
10.3934/dcdsb.2023014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problems of recurrence (almost au-tomorphy, Birkhoff recurrence, Poisson stability) for Navier-Stokes equations with a small external force in the rotational framework. We prove that these fluid equations admit a unique solution which possesses the same character of recurrence as the external force.
引用
收藏
页码:4311 / 4324
页数:14
相关论文
共 36 条
[21]  
Ogawa T., 2003, Kyushu J. Math, V57, P303, DOI [10.2206/kyushujm.57.303, DOI 10.2206/KYUSHUJM.57.303]
[22]  
Prodi G., 1960, Rend. Sem. Mat. Univ. Padova, V30, P1
[23]  
Prouse G., 1963, ATTI ACCAD NAZ SFMN, V35, P443
[25]  
Seyfert, 2017, SPRINGER P MATH STAT, V215, P51, DOI DOI 10.1007/978-3-319-66764-5_4
[26]  
Shcherbakov B. A., 1969, DIFF EQUAT+, V5, P2144
[27]  
Shcherbakov B. A, 1972, TOPOLOGICAL DYNAMICS
[28]  
Shcherbakov B. A, 1985, POISSONS STABILITY M
[29]  
Shcherbakov B. A, 1967, Differ. Uravn, V3, P1450
[30]  
SHCHERBAKOV B. A., 1968, Differencial' nye Uravnenija, V4, P238