An investigation of a closed-form solution for non-linear variable-order fractional evolution equations via the fractional Caputo derivative

被引:6
作者
Ali, Umair [1 ]
Naeem, Muhammad [2 ]
Alahmadi, Reham [3 ]
Abdullah, Farah Aini [4 ]
Khan, Muhammad Asim [5 ]
Ganie, Abdul Hamid [3 ]
机构
[1] Inst Space Technol, Dept Appl Math & Stat, Islamabad, Pakistan
[2] Umm Al Qura Univ, Dept Math Appl Sci, Mecca, Saudi Arabia
[3] Saudi Elect Univ, Coll Sci & Theoret Studies, Dept Basic Sci, Riyadh, Saudi Arabia
[4] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
[5] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu, Malaysia
关键词
space-time variable-order fractional shallow water wave equation; variable-order Caputo fractional derivative; Khater method; closed-form solution; graphical representation; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.3389/fphy.2023.1114319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Determining the non-linear traveling or soliton wave solutions for variable-order fractional evolution equations (VO-FEEs) is very challenging and important tasks in recent research fields. This study aims to discuss the non-linear space-time variable-order fractional shallow water wave equation that represents non-linear dispersive waves in the shallow water channel by using the Khater method in the Caputo fractional derivative (CFD) sense. The transformation equation can be used to get the non-linear integer-order ordinary differential equation (ODE) from the proposed equation. Also, new exact solutions as kink- and periodic-type solutions for non-linear space-time variable-order fractional shallow water wave equations were constructed. This confirms that the non-linear fractional variable-order evolution equations are natural and very attractive in mathematical physics.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
Akgül A, 2017, INT J OPTIMIZ CONTRO, V7, P112, DOI [10.11121/ijocta.01.2017.00368, DOI 10.11121/IJOCTA.01.2017.00368]
[2]   On some novel exact solutions to the time fractional (2+1) dimensional Konopelchenko-Dubrovsky system arising in physical science [J].
Akhtar, Junaid ;
Seadawy, Aly R. ;
Tariq, Kalim U. ;
Baleanu, Dumitru .
OPEN PHYSICS, 2020, 18 (01) :806-819
[3]  
Ali U., 2022, TRAVELING WAVE SOLUT
[4]  
Ali U., 2012, INT J MOD MATH SCI, V3, P116
[5]   Soliton solutions for nonlinear variable-order fractional Korteweg-de Vries (KdV) equation arising in shallow water waves [J].
Ali, Umair ;
Ahmad, Hijaz ;
Abu-Zinadah, Hanaa .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2024, 9 (01) :50-58
[6]   Exact analytical wave solutions for space-time variable-order fractional modified equal width equation [J].
Ali, Umair ;
Ahmad, Hijaz ;
Baili, Jamel ;
Botmart, Thongchai ;
Aldahlan, Maha A. .
RESULTS IN PHYSICS, 2022, 33
[7]   Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation [J].
Ali, Umair ;
Mastoi, Sanaullah ;
Othman, Wan Ainun Mior ;
Khater, Mostafa M. A. ;
Sohail, Muhammad .
AIMS MATHEMATICS, 2021, 6 (09) :10055-10069
[8]   Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation [J].
Ali, Umair ;
Sohail, Muhammad ;
Usman, Muhammad ;
Abdullah, Farah Aini ;
Khan, Ilyas ;
Nisar, Kottakkaran Sooppy .
SYMMETRY-BASEL, 2020, 12 (05)
[9]   New exact solutions of a generalized shallow water wave equation [J].
Bagchi, Bijan ;
Das, Supratim ;
Ganguly, Asish .
PHYSICA SCRIPTA, 2010, 82 (02)
[10]   Rational closed form soliton solutions to certain nonlinear evolution equations ascend in mathematical physics [J].
Barman, Hemonta K. ;
Seadawy, Aly R. ;
Roy, Ripan ;
Akbar, M. Ali ;
Raddadi, M. H. .
RESULTS IN PHYSICS, 2021, 27