Analysis of various separation characteristics of Ranque-Hilsch vortex tube and its applications - A review

被引:15
|
作者
Ambedkar, Pradeep [1 ]
Dutta, Tanmay [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Mech Engn, Dhanbad 826004, Jharkhand, India
来源
关键词
Ranque-Hilsch vortex tube; Energy separation; Phase separation; Species separation; ARTIFICIAL NEURAL-NETWORK; ENERGY SEPARATION; NUMERICAL-ANALYSIS; CFD ANALYSIS; NOZZLE NUMBER; THERMAL PERFORMANCE; GEOMETRICAL PARAMETERS; SURFACE-ROUGHNESS; EXERGY ANALYSIS; DIAMETER RATIO;
D O I
10.1016/j.cherd.2023.01.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The Ranque-Hilsch vortex tube (RHVT) is a compact thermo-fluidic device primarily used to split a highly pressurized gaseous fluid into two different temperature streams. Vortex tubes are mainly known for their energy separation characteristic. But the interesting fact is that the vortex tube can also separate constituents of the fluid mixture into various phases. In some instances, the highly swirling fluid inside the RHVT gets split into distinct species at the outlets. This paper reviews previous vortex tube studies on energy, phases, and species separation to analyze the mechanism and their influencing parameters. The paper also includes a brief CFD study conducted on five working gases to show the nature of thermal separation. The effect of nozzle number and nozzle geometry, L/D ratio and divergent angle of the main tube, and conical valve geometry are discussed for each separation behavior. Operating parameters such as inlet pressure, temperature, and thermo-physical properties of working fluids are discussed for the efficient and optimized operation of RHVT. Reviewing the previous literature supported exploring more novel ideas in optimizing separation techniques, such as the appropriate selection of tube material, cooling of the hot tube, and insulation near the cold end. The analysis presented a broad application of RHVT utilizing its energy and mass separation behavior in several mechanical processes. The study also led to an understanding of the utility of RHVT in trans-critical refrigeration systems, water droplet separation, and liquid oxygen collection systems.(c) 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 50 条
  • [11] Droplet behaviour in a Ranque-Hilsch vortex tube
    Liew, R.
    Michalek, W. R.
    Zeegers, J. C. H.
    Kuerten, J. G. M.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): PARTICLES IN TURBULENCE, TRANSPORT PROCESSES AND MIXING, 2011, 318
  • [12] Experimental investigation of the effects of threefold type Ranque-Hilsch vortex tube and six cascade type Ranque-Hilsch vortex tube on the performance of counter flow Ranque-Hilsch vortex tubes
    Dincer, Kevser
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (06): : 1366 - 1371
  • [13] Flow Structure in a Ranque-Hilsch Vortex Tube
    Akhmetov, D. G.
    Akhmetov, T. D.
    Pavlov, V. A.
    DOKLADY PHYSICS, 2018, 63 (06) : 235 - 238
  • [14] Theoretical Analysis of Compressible Flows in Ranque-Hilsch Vortex Tube
    Shaji, Kannan
    Lee, Kangki
    Kim, Heuy Dong
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [15] Review of Ranque-Hilsch vortex tube experiments using air
    Subudhi, Sudhakar
    Sen, Mihir
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 52 : 172 - 178
  • [16] Theoretical analysis of the compressible flow in Ranque-Hilsch vortex tube
    Shaji, Kannan
    Suryan, Abhilash
    Kim, Heuy Dong
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [17] Fluid properties impact on energy separation in Ranque-Hilsch vortex tube
    Alsaghir, Ahmad
    Hamdan, Mohammad O.
    Orhan, Mehmet F.
    SN APPLIED SCIENCES, 2022, 4 (08):
  • [18] PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE
    Devade, Kiran
    Pise, Ashok
    JOURNAL OF THERMAL ENGINEERING, 2018, 4 (05): : 2333 - 2354
  • [19] Thermofluid-Acoustic Analysis of a Ranque-Hilsch Vortex Tube
    Wisnoe, Wirachman
    Abd Rahman, Khairil Muhaimin
    Istihat, Yusman
    Natarajan, Valliyappan David
    3RD INTERNATIONAL CONFERENCE ON SYSTEM-INTEGRATED INTELLIGENCE: NEW CHALLENGES FOR PRODUCT AND PRODUCTION ENGINEERING, 2016, 26 : 544 - 551
  • [20] ON GAS SEPARATION IN RANQUE-HILSCH VORTEX TUBES
    LINDERSTROMLANG, CU
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1967, A 22 (05): : 835 - +