Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning

被引:25
作者
Qin, Haosen [1 ]
Yu, Zhen [2 ]
Li, Tailu [1 ]
Liu, Xueliang [2 ]
Li, Li [2 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin Key Lab Clean Energy & Pollutant Control, Tianjin 400301, Peoples R China
[2] China Acad Bldg Res, Inst Bldg Environm & Energy, Beijing 100013, Peoples R China
关键词
HVAC; Optimal control; Reinforcement learning; Deep Q learning; Prioritized replay; Model -free control; MODEL-PREDICTIVE CONTROL; NEURAL-NETWORKS; HVAC SYSTEMS; OPTIMIZATION; VENTILATION; REGRESSION; SAVINGS; DESIGN;
D O I
10.1016/j.energy.2022.126209
中图分类号
O414.1 [热力学];
学科分类号
摘要
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems is critical to improving energy efficiency of demand-side. In this paper, a model-free optimal control method based on deep reinforcement learning is proposed to control the heat pump start/stop and room temperature setting in residential buildings. The opti-mization goal of this method is to obtain the highest comprehensive reward which considering thermal comfort and energy cost. Firstly, the randomness, learning process, thermal comfort and energy consumption of the model-free controller are systematically investigated by a simulation system based on measured data. The results show that randomness has a significant impact on the initial performance and convergence speed of the model -free controller; The model-free controller has a linear accumulation of comprehensive rewards during the learning process, and the slope of the accumulated comprehensive rewards can be used to determine whether the controller converges; The model-free controller coordinates monitoring data, weather forecasts and building thermal inertia to achieve the highest comprehensive reward. Afterwards, the model-free controller was verified in a nearly zero energy residential building in Beijing, China. The results show that model-free controller im-proves the comprehensive reward by 15.3% compared to rule-based method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Energy-efficient envelope design for residential buildings: a case study in Oman
    Al-Saadi, Saleh N. J.
    Al-Jabri, Khalifa S.
    2017 SMART CITY SYMPOSIUM PRAGUE (SCSP), 2017,
  • [42] Energy-Efficient Retrofitting Strategies for Residential Buildings in hot climate of Oman
    Al-Saadi, Saleh N. J.
    Al-Hajri, Jawaher
    Sayari, Mohamed A.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 2009 - 2014
  • [43] Reinforcement Learning for Energy-Efficient Trajectory Design of UAVs
    Arani, Atefeh Hajijamali
    Azari, M. Mahdi
    Hu, Peng
    Zhu, Yeying
    Yanikomeroglu, Halim
    Safavi-Naeini, Safieddin
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11): : 9060 - 9070
  • [44] Energy-efficient façade design of residential buildings: A critical review
    Ma, Wei
    Wang, Xiangyu
    Shou, Wenchi
    Wang, Jun
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 18
  • [45] Deep-Reinforcement-Learning-Based Energy-Efficient Resource Management for Social and Cognitive Internet of Things
    Yang, Helin
    Zhong, Wen-De
    Chen, Chen
    Alphones, Arokiaswami
    Xie, Xianzhong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (06) : 5677 - 5689
  • [46] Reinforcement learning for HVAC control and energy efficiency in residential buildings with BOPTEST simulations and real-case validation
    Youssef Boutahri
    Amine Tilioua
    Discover Computing, 28 (1)
  • [47] Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach
    Nie, Yiwen
    Zhao, Junhui
    Liu, Jun
    Jiang, Jing
    Ding, Ruijin
    CHINA COMMUNICATIONS, 2020, 17 (10) : 129 - 141
  • [48] Deep Reinforcement Learning for Energy-Efficient Beamforming Design in Cell-Free Networks
    Li, Weilai
    Ni, Wanli
    Tian, Hui
    Hua, Meihui
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2021,
  • [49] Energy-Efficient Mobile Crowdsensing by Unmanned Vehicles: A Sequential Deep Reinforcement Learning Approach
    Piao, Chengzhe
    Liu, Chi Harold
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6312 - 6324
  • [50] Fast Reinforcement Learning for Energy-Efficient Wireless Communication
    Mastronarde, Nicholas
    van der Schaar, Mihaela
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (12) : 6262 - 6266