Enhancing structural and cycle stability of Prussian blue cathode materials for calcium-ion batteries by introducing divalent Fe

被引:13
作者
Du, Chong -Yu [1 ]
Zhang, Zi-Hao [1 ]
Li, Xun-Lu [1 ]
Luo, Rui-Jie [1 ]
Ma, Cui [1 ]
Bao, Jian [1 ]
Zeng, Jie [1 ]
Xu, Xuan [1 ]
Wang, Fei [1 ]
Zhou, Yong-Ning [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; NEUTRON-DIFFRACTION; PHASE-TRANSITION; OPEN FRAMEWORK; HEXACYANOFERRATE; ELECTROLYTE; INSERTION; HOST;
D O I
10.1016/j.cej.2022.138650
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Calcium-ion batteries (CIBs) have been of interest for rechargeable batteries due to their high energy density and fast ion diffusion in liquid electrolyte originated from the divalence and low charge/radius ratio of Ca ion. However, exploring high performance cathode materials for CIBs is very challenging. In this work, divalent Fe ions are introduced into copper hexacyanoferrate (CuHCF) to construct a new Prussian blue cathode material rich of Fe2+ by using K4Fe(CN)(6) as the precursor instead of K3Fe(CN)(6). The Fe2+ ions at low-spin state can improve the structural stability of CuHCF during Ca ions extraction and insertion processes effectively. It is found that the lattice parameter change of CuHCF is only 0.13 % during charge and discharge, much less than the CuHCF with Fe3+. X-ray absorption spectroscopy indicates that the charge compensation of CuHCF(Fe2+) is mainly contributed by Fe2+/Fe3+ redox couple. The octahedral distortion in CuHCF is also suppressed effectively. As a result, the CuHCF(Fe2+) cathode can deliver a reversible capacity of 54.5 mAh/g at 20 mA g(-1) with a high capacity retention of 90.43 % after 1000 cycles.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage
    Adil, Md
    Sarkar, Ananta
    Roy, Amlan
    Panda, Manas Ranjan
    Nagendra, Abharana
    Mitra, Sagar
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 11489 - 11503
  • [2] Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability
    Asakura, Daisuke
    Li, Carissa H.
    Mizuno, Yoshifumi
    Okubo, Masashi
    Zhou, Haoshen
    Talham, Daniel R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (07) : 2793 - 2799
  • [3] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
  • [4] Lithium insertion into host materials: the key to success for Li ion batteries
    Broussely, M
    Biensan, P
    Simon, B
    [J]. ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 3 - 22
  • [5] Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
    Canepa, Pieremanuele
    Gautam, Gopalakrishnan Sai
    Hannah, Daniel C.
    Malik, Rahul
    Liu, Miao
    Gallagher, Kevin G.
    Persson, Kristin A.
    Ceder, Gerbrand
    [J]. CHEMICAL REVIEWS, 2017, 117 (05) : 4287 - 4341
  • [6] Orbital polarization of the unoccupied states in multiferroic LiCu2O2
    Chen, C. L.
    Yeh, K. W.
    Huang, D. J.
    Hsu, F. C.
    Lee, Y. C.
    Huang, S. W.
    Guo, G. Y.
    Lin, H. -J.
    Rao, S. M.
    Wu, M. K.
    [J]. PHYSICAL REVIEW B, 2008, 78 (21)
  • [7] NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density
    Chen, Mingzhe
    Hua, Weibo
    Xiao, Jin
    Cortiel, David
    Chen, Weihua
    Wang, Enhui
    Hu, Zhe
    Gu, Qinfen
    Wang, Xiaolin
    Indris, Sylvio
    Chou, Shu-Lei
    Dou, Shi-Xue
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions
    Dostal, A
    Kauschka, G
    Reddy, SJ
    Scholz, F
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 406 (1-2): : 155 - 163
  • [9] Achievements, Challenges, and Prospects of Calcium Batteries
    Elena Arroyo-de Dompablo, M.
    Ponrouch, Alexandre
    Johansson, Patrik
    Rosa Palacin, M.
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 6331 - 6357
  • [10] An Aqueous Ca-Ion Battery
    Gheytani, Saman
    Liang, Yanliang
    Wu, Feilong
    Jing, Yan
    Dong, Hui
    Rao, Karun K.
    Chi, Xiaowei
    Fang, Fang
    Yao, Yan
    [J]. ADVANCED SCIENCE, 2017, 4 (12):