Properties of analogues of Frobenius powers of ideals

被引:0
作者
Chanda, Subhajit [1 ]
Kumar, Arvind [2 ]
机构
[1] IIT Madras, Dept Math, New Acad Complex, Chennai 600036, Tamil Nadu, India
[2] Chennai Math Inst, Dept Math, Chennai 603103, Tamil Nadu, India
关键词
Frobenius power; Square power; Regularity; Projective dimension; Betti numbers; Depth and symbolic power; ASYMPTOTIC-BEHAVIOR;
D O I
10.1007/s13226-022-00272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R = K[X-1, ..., X-n] be a polynomial ring over a field K. We introduce an endomorphism F-[m] : R -> R and denote the image of an ideal I of R via this endomorphism as I([m] )and call it to be the m-th square power of I. In this article, we study some homological invariants of I-[m] such as regularity, projective dimension, associated primes, and depth for some families of ideals, e.g., monomial ideals.
引用
收藏
页码:524 / 531
页数:8
相关论文
共 16 条
  • [1] A linear bound for frobenius powers and an inclusion bound for tight closure
    Brenner, H
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (03) : 585 - 596
  • [2] Tight closure does not commute with localization
    Brenner, Holger
    Monsky, Paul
    [J]. ANNALS OF MATHEMATICS, 2010, 171 (01) : 571 - 588
  • [3] ASYMPTOTIC STABILITY OF ASS(M-INM)
    BRODMANN, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (01) : 16 - 18
  • [4] Bruns, 1993, CAMBRIDGE STUDIES AD, V39
  • [5] Chardin M., 2007, LECT NOTES PURE APPL, V254, P1
  • [6] Asymptotic behaviour of the Castelnuovo-Mumford regularity
    Cutkosky, SD
    Herzog, J
    Trung, NV
    [J]. COMPOSITIO MATHEMATICA, 1999, 118 (03) : 243 - 261
  • [7] ON THE EXISTENCE OF F-THRESHOLDS AND RELATED LIMITS
    De Stefani, Alessandro
    Nunez-Betancourt, Luis
    Perez, Felipe
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (09) : 6629 - 6650
  • [8] MATROID CONFIGURATIONS AND SYMBOLIC POWERS OF THEIR IDEALS
    Geramita, A. V.
    Harbourne, B.
    Migliore, J.
    Nagel, U.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 7049 - 7066
  • [9] Gitler I., 2007, Beitr. Algebra Geom., V48, P141
  • [10] Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6