High-order multigrid strategies for hybrid high-order discretizations of elliptic equations

被引:1
作者
Di Pietro, Daniele A. [1 ]
Matalon, Pierre [1 ,2 ,3 ]
Mycek, Paul [2 ]
Ruede, Ulrich [2 ,3 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] CERFACS, Toulouse, France
[3] FAU, Erlangen, Germany
关键词
elliptic partial differential equation; hybrid high-order; multigrid; coarsening strategy; LOCKING; GRADIENT;
D O I
10.1002/nla.2456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study compares various multigrid strategies for the fast solution of elliptic equations discretized by the hybrid high-order method. Combinations of h$$ h $$-, p$$ p $$-, and hp$$ hp $$-coarsening strategies are considered, combined with diverse intergrid transfer operators. Comparisons are made experimentally on 2D and 3D test cases, with structured and unstructured meshes, and with nested and non-nested hierarchies. Advantages and drawbacks of each strategy are discussed for each case to establish simplified guidelines for the optimization of the time to solution.
引用
收藏
页数:22
相关论文
共 31 条
[11]   AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER DISCRETIZATIONS [J].
Di Pietro, Daniele A. ;
Hulsemann, Frank ;
Matalon, Pierre ;
Mycek, Paul ;
Ruede, Ulrich ;
Ruiz, Daniel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) :S839-S861
[12]   Towards robust, fast solutions of elliptic equations on complex domains through hybrid high-order discretizations and non-nested multigrid methods [J].
Di Pietro, Daniele A. ;
Hulsemann, Frank ;
Matalon, Pierre ;
Mycek, Paul ;
Ruede, Ulrich ;
Ruiz, Daniel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (22) :6576-6595
[13]   A hybrid high-order locking-free method for linear elasticity on general meshes [J].
Di Pietro, Daniele A. ;
Ern, Alexandre .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 :1-21
[14]   Hybrid multigrid methods for high-order discontinuous Galerkin discretizations [J].
Fehn, Niklas ;
Munch, Peter ;
Wall, Wolfgang A. ;
Kronbichler, Martin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
[15]   Gradient Recovery for Elliptic Interface Problem: I. Body-Fitted Mesh [J].
Guo, Hailong ;
Yang, Xu .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (05) :1488-1511
[16]  
Kohl N., 2020, ARXIV201013513 CS MA
[17]   Homogeneous multigrid for HDG [J].
Lu, Peipei ;
Rupp, Andreas ;
Kanschat, Guido .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) :3135-3153
[18]   Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation [J].
Mascarenhas, Brendan S. ;
Helenbrook, Brian T. ;
Atkins, Harold L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (10) :3664-3674
[19]   A-POSTERIORI-STEERED p-ROBUST MULTIGRID WITH OPTIMAL STEP-SIZES AND ADAPTIVE NUMBER OF SMOOTHING STEPS [J].
Miraci, Ani ;
Papez, Jan ;
Vohralik, Martin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) :S117-S145
[20]   A MULTILEVEL ALGEBRAIC ERROR ESTIMATOR AND THE CORRESPONDING ITERATIVE SOLVER WITH p-ROBUST BEHAVIOR [J].
Miraci, Ani ;
Papez, Jan ;
Vohralik, Martin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2856-2884