A class of exactly solvable real and complex PT symmetric reflectionless potentials

被引:0
作者
Banerjee, Suman [1 ]
Yadav, Rajesh Kumar [1 ]
Khare, Avinash [2 ]
Mandal, Bhabani Prasad [3 ]
机构
[1] Sido Kanhu Murmu Univ, Dept Phys, Dumka 814110, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[3] Banaras Hindu Univ, Dept Phys, Varanasi 221005, India
关键词
SHAPE-INVARIANT POTENTIALS; NON-HERMITIAN HAMILTONIANS; GROUP THEORETIC APPROACH; SCATTERING-AMPLITUDES; QUANTUM-MECHANICS; EIGENVALUES; EXTENSIONS; FAMILIES;
D O I
10.1063/5.0174810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the question of the number of exactly solvable complex but PT-invariant reflectionless potentials with N bound states. By carefully considering the Xm rationally extended reflectionless potentials, we argue that the total number of exactly solvable complex PT-invariant reflectionless potentials are 2[(2N - 1)m + N].
引用
收藏
页数:17
相关论文
共 50 条
[41]   Exact solutions for a class of quasi-exactly solvable models: A unified treatment [J].
Hatami, N. ;
Setare, M. R. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (07)
[42]   Unified derivation of exact solutions for a class of quasi-exactly solvable models [J].
Agboola, Davids ;
Zhang, Yao-Zhong .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[43]   PT-Symmetric Periodic Optical Potentials [J].
Makris, K. G. ;
El-Ganainy, R. ;
Christodoulides, D. N. ;
Musslimani, Z. H. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) :1019-1041
[44]   PT-symmetric eigenvalues for homogeneous potentials [J].
Eremenko, Alexandre ;
Gabrielov, Andrei .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[45]   Solvable potentials in pseudo-hermetic Dirac equation with PT symmetry [J].
Soliemani, F. ;
Bakhshi, Z. .
PHYSICA SCRIPTA, 2021, 96 (12)
[46]   COMPLEX POTENTIALS WITH REAL EIGENVALUES AND THE INVERSE PROBLEM [J].
Lombard, R. J. ;
Mezhoud, R. ;
Yekken, R. .
ROMANIAN JOURNAL OF PHYSICS, 2018, 63 (1-2)
[47]   Bound states of PT-symmetric separable potentials [J].
Bender, Carl M. ;
Jones, Hugh F. .
PHYSICAL REVIEW A, 2011, 84 (03)
[48]   PT-symmetric potentials having continuous spectra [J].
Wen, Zichao ;
Bender, Carl M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
[49]   Numerical estimates of the spectrum for anharmonic PT symmetric potentials [J].
Bowen, Samuel P. ;
Mancini, Jay D. ;
Fessatidis, Vassilios ;
Murawski, Robert K. .
PHYSICA SCRIPTA, 2012, 85 (06)
[50]   Exactly solvable nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction [J].
Cannata, F. ;
Ioffe, M. V. ;
Nishnianidze, D. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)