A class of exactly solvable real and complex PT symmetric reflectionless potentials

被引:0
作者
Banerjee, Suman [1 ]
Yadav, Rajesh Kumar [1 ]
Khare, Avinash [2 ]
Mandal, Bhabani Prasad [3 ]
机构
[1] Sido Kanhu Murmu Univ, Dept Phys, Dumka 814110, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[3] Banaras Hindu Univ, Dept Phys, Varanasi 221005, India
关键词
SHAPE-INVARIANT POTENTIALS; NON-HERMITIAN HAMILTONIANS; GROUP THEORETIC APPROACH; SCATTERING-AMPLITUDES; QUANTUM-MECHANICS; EIGENVALUES; EXTENSIONS; FAMILIES;
D O I
10.1063/5.0174810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the question of the number of exactly solvable complex but PT-invariant reflectionless potentials with N bound states. By carefully considering the Xm rationally extended reflectionless potentials, we argue that the total number of exactly solvable complex PT-invariant reflectionless potentials are 2[(2N - 1)m + N].
引用
收藏
页数:17
相关论文
共 50 条
[31]   Exactly solvable potentials with finitely many discrete eigenvalues of arbitrary choice [J].
Sasaki, Ryu .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
[32]   Novel quasi-exactly solvable models with anharmonic singular potentials [J].
Agboola, Davids ;
Zhang, Yao-Zhong .
ANNALS OF PHYSICS, 2013, 330 :246-262
[33]   SINGULAR PERTURBATION OF POLYNOMIAL POTENTIALS WITH APPLICATIONS TO PT-SYMMETRIC FAMILIES [J].
Eremenko, Alexandre ;
Gabrielov, Andrei .
MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (03) :473-503
[34]   Real discrete spectrum in the complex non-PT-symmetric Scarf II potential [J].
Ahmed, Zafar ;
Nathan, Joseph Amal .
PHYSICS LETTERS A, 2015, 379 (10-11) :865-869
[35]   PT-symmetric potentials with imaginary asymptotic saturation [J].
Ahmed, Zafar ;
Kumar, Sachin ;
Nathan, Joseph Amal .
PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (03)
[36]   Heun functions and quasi-exactly solvable double-well potentials [J].
Chen, Bei-Hua ;
Wu, Yan ;
Xie, Qiong-Tao .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (03)
[37]   PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials [J].
Dorey, Patrick ;
Dunning, Clare ;
Lishman, Anna ;
Tateo, Roberto .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
[38]   PT-Symmetric Potentials from the Confluent Heun Equation [J].
Levai, Geza .
ENTROPY, 2021, 23 (01) :1-19
[39]   New families of non-parity-time-symmetric complex potentials with all-real spectra [J].
Bagchi, Bijan ;
Yang, Jianke .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
[40]   Influence of PT-symmetric complex potentials on the decoupling mechanism in quantum transport processes [J].
Zhang, Lian-Lian ;
Gong, Wei-Jiang ;
Yi, Guang-Yu ;
Du, An .
ANNALS OF PHYSICS, 2020, 416