A class of exactly solvable real and complex PT symmetric reflectionless potentials

被引:0
作者
Banerjee, Suman [1 ]
Yadav, Rajesh Kumar [1 ]
Khare, Avinash [2 ]
Mandal, Bhabani Prasad [3 ]
机构
[1] Sido Kanhu Murmu Univ, Dept Phys, Dumka 814110, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[3] Banaras Hindu Univ, Dept Phys, Varanasi 221005, India
关键词
SHAPE-INVARIANT POTENTIALS; NON-HERMITIAN HAMILTONIANS; GROUP THEORETIC APPROACH; SCATTERING-AMPLITUDES; QUANTUM-MECHANICS; EIGENVALUES; EXTENSIONS; FAMILIES;
D O I
10.1063/5.0174810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the question of the number of exactly solvable complex but PT-invariant reflectionless potentials with N bound states. By carefully considering the Xm rationally extended reflectionless potentials, we argue that the total number of exactly solvable complex PT-invariant reflectionless potentials are 2[(2N - 1)m + N].
引用
收藏
页数:17
相关论文
共 50 条
[21]   Accidental crossing of energy eigenvalues in PT-symmetric Natanzon-class potentials [J].
Levai, G. .
ANNALS OF PHYSICS, 2017, 380 :1-11
[22]   Quasi-exactly solvable potentials with two known eigenstates [J].
Tkachuk, VM .
PHYSICS LETTERS A, 1998, 245 (3-4) :177-182
[23]   Exactly solvable new classes of potentials with finite discrete energies [J].
Benbourenane, J. ;
Eleuch, H. .
RESULTS IN PHYSICS, 2020, 17
[24]   Transparency of the complex PT-symmetric potentials for coherent injection [J].
Ahmed, Zafar ;
Nathan, Joseph Amal ;
Ghosh, Dona .
PHYSICS LETTERS A, 2016, 380 (04) :562-566
[25]   THE LINEAR PT-SYMMETRIC COMPLEX POTENTIAL [J].
Lombard, R. J. ;
Mezhoud, R. .
ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (5-6)
[26]   Unified treatment of exactly solvable quantum potentials with confluent hypergeometric eigenfunctions: Generalized potentials [J].
Pena, J. J. ;
Morales, J. ;
Garcia-Martinez, J. ;
Garcia-Ravelo, J. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (24) :3815-3821
[27]   PT-symmetry rules applied to a class of real potentials [J].
Garidi, S. ;
Lombard, R. J. ;
Mezhoud, R. .
PHYSICA SCRIPTA, 2024, 99 (03)
[28]   New quasi-exactly solvable double-well potentials [J].
Xie, Qiong-Tao .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
[29]   Tunneling dynamics in exactly solvable models with triple-well potentials [J].
Berezovoj, V. P. ;
Konchatnij, M. I. ;
Nurmagambetov, A. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (06)
[30]   Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics [J].
Quesne, C. .
SYMMETRIES IN SCIENCE XV, 2012, 380