A class of exactly solvable real and complex PT symmetric reflectionless potentials

被引:0
作者
Banerjee, Suman [1 ]
Yadav, Rajesh Kumar [1 ]
Khare, Avinash [2 ]
Mandal, Bhabani Prasad [3 ]
机构
[1] Sido Kanhu Murmu Univ, Dept Phys, Dumka 814110, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[3] Banaras Hindu Univ, Dept Phys, Varanasi 221005, India
关键词
SHAPE-INVARIANT POTENTIALS; NON-HERMITIAN HAMILTONIANS; GROUP THEORETIC APPROACH; SCATTERING-AMPLITUDES; QUANTUM-MECHANICS; EIGENVALUES; EXTENSIONS; FAMILIES;
D O I
10.1063/5.0174810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the question of the number of exactly solvable complex but PT-invariant reflectionless potentials with N bound states. By carefully considering the Xm rationally extended reflectionless potentials, we argue that the total number of exactly solvable complex PT-invariant reflectionless potentials are 2[(2N - 1)m + N].
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Accidental crossing of energy eigenvalues in PT-symmetric Natanzon-class potentials
    Levai, G.
    ANNALS OF PHYSICS, 2017, 380 : 1 - 11
  • [22] Quasi-exactly solvable potentials with two known eigenstates
    Tkachuk, VM
    PHYSICS LETTERS A, 1998, 245 (3-4) : 177 - 182
  • [23] Exactly solvable new classes of potentials with finite discrete energies
    Benbourenane, J.
    Eleuch, H.
    RESULTS IN PHYSICS, 2020, 17
  • [24] Transparency of the complex PT-symmetric potentials for coherent injection
    Ahmed, Zafar
    Nathan, Joseph Amal
    Ghosh, Dona
    PHYSICS LETTERS A, 2016, 380 (04) : 562 - 566
  • [25] THE LINEAR PT-SYMMETRIC COMPLEX POTENTIAL
    Lombard, R. J.
    Mezhoud, R.
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (5-6):
  • [26] Unified treatment of exactly solvable quantum potentials with confluent hypergeometric eigenfunctions: Generalized potentials
    Pena, J. J.
    Morales, J.
    Garcia-Martinez, J.
    Garcia-Ravelo, J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (24) : 3815 - 3821
  • [27] PT-symmetry rules applied to a class of real potentials
    Garidi, S.
    Lombard, R. J.
    Mezhoud, R.
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [28] New quasi-exactly solvable double-well potentials
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
  • [29] Tunneling dynamics in exactly solvable models with triple-well potentials
    Berezovoj, V. P.
    Konchatnij, M. I.
    Nurmagambetov, A. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (06)
  • [30] Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics
    Quesne, C.
    SYMMETRIES IN SCIENCE XV, 2012, 380