Local well posedness for a system of quasilinear PDEs modelling suspension bridges

被引:7
作者
Feola, Roberto [1 ]
Giuliani, Filippo [2 ]
Iandoli, Felice [3 ]
Massetti, Jessica Elisa [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[3] Univ Calabria, Dipartimento Matemat Informat, Ponte Pietro Bucci, I-87036 Arcavacata Di Rende, Italy
关键词
Quasilinear beam-wave equations; Local well posedness; Energy method; Paradifferential calculus; Suspension bridges; EXISTENCE;
D O I
10.1016/j.na.2023.113442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide a local well posedness result for a quasilinear beam -wave system of equations on a one-dimensional spatial domain under periodic and Dirichlet boundary conditions. This kind of systems provides a refined model for the time -evolution of suspension bridges, where the beam and wave equations describe respectively the longitudinal and torsional motion of the deck. The quasilinearity arises when one takes into account the nonlinear restoring action of deformable cables and hangers. To obtain the a priori estimates for the solutions of the linearized equation we build a modified energy by means of paradifferential changes of variables. Then we construct the solutions of the nonlinear problem by using a quasilinear iterative scheme a la Kato.
引用
收藏
页数:23
相关论文
共 32 条
[1]  
[Anonymous], 2019, SpringerBriefs in Applied Sciences and Technology, PoliMI Springer Briefs
[2]  
[Anonymous], 1823, MEmoire sur Les Ponts Suspendus
[3]   Torsional instability in suspension bridges: The Tacoma Narrows Bridge case [J].
Arioli, Gianni ;
Gazzola, Filippo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :342-357
[4]   On a Nonlinear Nonlocal Hyperbolic System Modeling Suspension Bridges [J].
Arioli, Gianni ;
Gazzola, Filippo .
MILAN JOURNAL OF MATHEMATICS, 2015, 83 (02) :211-236
[5]   A qualitative explanation of the origin of torsional instability in suspension bridges [J].
Berchio, Elvise ;
Gazzola, Filippo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :54-72
[6]  
Berti M, 2021, J DYN DIFFER EQU, V33, P1475, DOI 10.1007/s10884-020-09927-3
[7]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[8]   OBSERVATIONS ON NONLINEAR DYNAMIC CHARACTERISTICS OF SUSPENSION BRIDGES [J].
BROWNJOHN, JMW .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1994, 23 (12) :1351-1367
[9]   Subharmonic resonances of the parametrically driven pendulum [J].
Butikov, EI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (30) :6209-6231
[10]  
Cazenave T., 2003, SEMILINEAR SCHRODING