Rapid and Flexible Humidity Sensor Based on Laser-Induced Graphene for Monitoring Human Respiration

被引:8
作者
Paeng, Changung [1 ]
Shanmugasundaram, Arunkumar [2 ,3 ]
We, Gunwoo [4 ]
Kim, Taewook [1 ,4 ,5 ]
Park, Jongsung [5 ,6 ]
Lee, Dong-Weon [2 ,3 ,7 ]
Yim, Changyong [1 ,4 ,5 ]
机构
[1] Kyungpook Natl Univ KNU, Dept Energy Mat & Chem Engn, Sangju Si 37224, Gyeongsangbuk D, South Korea
[2] Chonnam Natl Univ CNU, Sch Mech Engn, MEMS & Nanotechnol Lab, Gwangju 61186, South Korea
[3] Chonnam Natl Univ CNU, Adv Med Device Res Ctr Cardiovasc Dis, Gwangju 61186, South Korea
[4] Kyungpook Natl Univ KNU, Dept Energy Chem Engn, Sangju Si 37224, Gyeongsangbuk D, South Korea
[5] Kyungpook Natl Univ KNU, Dept Adv Sci & Technol Convergence, Sangju Si 37224, Gyeongsangbuk D, South Korea
[6] Kyungpook Natl Univ KNU, Dept Precis Mech Engn, 2559,Gyeongsang daero, Sangju 37224, Gyeongsangbukdo, South Korea
[7] Chonnam Natl Univ CNU, Ctr Next Generat Sensor Res & Dev, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
laser-induced graphene; intense pulsed light sintering; humidity sensing; respiration monitoring; biomedicaldevice; SENSING PROPERTIES; NANOCOMPOSITE; PHOTODETECTOR; POLYIMIDE; COPPER; METER;
D O I
10.1021/acsanm.3c05283
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Respiration is an important physiological parameter used to assess human health and metabolic activity. Herein, we propose a laser-induced graphene (LIG)-based humidity sensor for respiratory monitoring. This sensor is fabricated through a combination of laser irradiation and intense pulsed light (IPL) sintering techniques. Initially, an ink containing copper nanoparticles (CuNPs) and graphene nanoplatelets (GnPs) is coated onto a polyimide (PI) substrate. The LIG is formed on the PI film using laser irradiation. To establish a reliable electrical connection between the LIG and the copper electrode, the ink undergoes rapid IPL sintering, resulting in an IPL-sintered copper electrode. This technique not only optimizes the fabrication process but also obviates the need for traditional approaches, such as copper wire bonding, electrode patterning, or the application of conductive paint on the LIG sensor. The humidity-sensing capabilities of the sensor are assessed under various relative humidity (RH) conditions. The sensor's response escalates from roughly 15 to 92% as RH levels increase from 13 to 67%. The sensor showed minimal response to various potential interfering gases like ammonia, ethanol, carbon monoxide, sulfur dioxide, and nitrogen dioxide (with responses of 0.4, 1.87, 0.102, 0.12, and 0.29%, respectively), confirming its high selectivity for RH (91.2%). Additionally, the sensor demonstrates exemplary reproducibility, as evidenced by its consistent responses (approximately 47.65, 49.13, 48.65, 49.09, and 49.39) over five cycles at 40% RH. The LIG sensor is used to monitor a wide range of respiratory patterns, including normal, slow, fast, and apnea events. The sensor effectiveness is proven through the consistent detection of human breathing patterns over 30 min, demonstrating its stability and reliability for extended use in continuous respiratory monitoring. These findings highlight the significant potential of LIG sensors as advanced precision devices in clinical respiratory monitoring with potential integration into modern medical practices.
引用
收藏
页码:4772 / 4783
页数:12
相关论文
共 50 条
  • [31] A Flexible Low-Pass Filter Based on Laser-Induced Graphene
    Wang, Xiangfu
    Cui, Yixuan
    Tao, Yong
    Yang, Hengxin
    Zhao, Jiang
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (11) : 6348 - 6357
  • [32] High-Voltage Flexible Microsupercapacitors Based on Laser-Induced Graphene
    Li, Xiaoqian
    Cai, Weihua
    Teh, Kwok Siong
    Qi, Mingjing
    Zang, Xining
    Ding, Xinrui
    Cui, Yong
    Xie, Yingixi
    Wu, Yichuan
    Ma, Hongyu
    Zhou, Zaifa
    Huang, Qing-An
    Ye, Jianshan
    Lin, Liwei
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) : 26357 - 26364
  • [33] Fully integrated wearable humidity sensor for respiration monitoring
    Jin, Xiaofeng
    Zha, Lin
    Wang, Fan
    Wang, Yongzhong
    Zhang, Xueji
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [34] Direct Fabrication of Ultra-Sensitive Humidity Sensor Based on Hair-Like Laser-Induced Graphene Patterns
    Lee, Jun-Uk
    Ma, Yong-Won
    Jeong, Sung-Yeob
    Shin, Bo-Sung
    MICROMACHINES, 2020, 11 (05)
  • [35] A Flexible Low-Pass Filter Based on Laser-Induced Graphene
    Xiangfu Wang
    Yixuan Cui
    Yong Tao
    Hengxin Yang
    Jiang Zhao
    Journal of Electronic Materials, 2020, 49 : 6348 - 6357
  • [36] Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water
    Wang, Li
    Li, Mengyue
    Li, Bo
    Wang, Min
    Zhao, Hua
    Zhao, Fengnian
    FOODS, 2023, 12 (12)
  • [37] Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber
    Huang, Lixiong
    Wang, Han
    Wu, Peixuan
    Huang, Weimin
    Gao, Wei
    Fang, Feiyu
    Cai, Nian
    Chen, Rouxi
    Zhu, Ziming
    SENSORS, 2020, 20 (15) : 1 - 14
  • [38] Multifunctional Flexible Sensor Based on Cracked Laser-Induced Graphene for Tactile Perception and Self-Healable Applications
    Zhang, Yunhong
    Zhang, Yinchuan
    Sun, Mingyuan
    Wang, Shun
    Wang, Shuai
    Sun, Jiayang
    Ji, Hao
    Han, Yingkuan
    He, Qihang
    Li, Ping
    Han, Lin
    Zhang, Yu
    ACS APPLIED NANO MATERIALS, 2024, 7 (17) : 21170 - 21180
  • [39] Biodegradable humidity sensor based on laser induced graphene electrodes scribed on wood
    Neumaier, L.
    Zikulnig, J.
    Lengger, S.
    Kosel, J.
    2023 IEEE SENSORS, 2023,
  • [40] Flexible Humidity Sensor Based on a Graphene Oxide-Carbon Nanotube-Modified Co3O4 Nanoparticle-Embedded Laser-Induced Graphene Electrode
    Li, Lei
    Zhang, Jiaming
    Song, Yang
    Dan, Ronghui
    Xia, Xiaojuan
    Zhao, Jiang
    Xu, Rongqing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (26) : 33981 - 33992