Extremal Random Forests

被引:7
作者
Gnecco, Nicola [1 ,2 ]
Terefe, Edossa Merga [2 ,3 ]
Engelke, Sebastian [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Geneva, Res Ctr Stat, Geneva, Switzerland
[3] Hawassa Univ, Dept Stat, Awasa, Ethiopia
基金
瑞士国家科学基金会; 芬兰科学院;
关键词
Extreme quantiles; Local likelihood estimation; Quantile regression; Random forests; Threshold exceedances; MAXIMUM-LIKELIHOOD-ESTIMATION; QUANTILE REGRESSION; VALUE INDEX; ESTIMATOR; CONVERGENCE; CONSISTENCY; EXISTENCE; INFERENCE; MODELS; RATES;
D O I
10.1080/01621459.2023.2300522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can be used to extrapolate beyond the range of the data, and several approaches exist that use linear regression, kernel methods or generalized additive models. Most of these methods break down if the predictor space has more than a few dimensions or if the regression function of extreme quantiles is complex. We propose a method for extreme quantile regression that combines the flexibility of random forests with the theory of extrapolation. Our extremal random forest (ERF) estimates the parameters of a generalized Pareto distribution, conditional on the predictor vector, by maximizing a local likelihood with weights extracted from a quantile random forest. We penalize the shape parameter in this likelihood to regularize its variability in the predictor space. Under general domain of attraction conditions, we show consistency of the estimated parameters in both the unpenalized and penalized case. Simulation studies show that our ERF outperforms both classical quantile regression methods and existing regression approaches from extreme value theory. We apply our methodology to extreme quantile prediction for U.S. wage data. Supplementary materials for this article are available online.
引用
收藏
页码:3059 / 3072
页数:14
相关论文
共 64 条
  • [1] A refined Weissman estimator for extreme quantiles
    Allouche, Michael
    El Methni, Jonathan
    Girard, Stephane
    [J]. EXTREMES, 2023, 26 (03) : 545 - 572
  • [2] Quantile regression under misspecification, with an application to the US wage structure
    Angrist, J
    Chernozhukov, V
    Fernández-Val, I
    [J]. ECONOMETRICA, 2006, 74 (02) : 539 - 563
  • [3] Angrist Joshua D, 2009, HarvardDataverse, V1, DOI 10.7910/DVN/JNEOLQ
  • [4] [Anonymous], 1999, The Journal of Derivatives, DOI DOI 10.3905/JOD.1999.319106
  • [5] GENERALIZED RANDOM FORESTS
    Athey, Susan
    Tibshirani, Julie
    Wager, Stefan
    [J]. ANNALS OF STATISTICS, 2019, 47 (02) : 1148 - 1178
  • [6] RESIDUAL LIFE TIME AT GREAT AGE
    BALKEMA, AA
    DEHAAN, L
    [J]. ANNALS OF PROBABILITY, 1974, 2 (05) : 792 - 804
  • [7] Estimation of the extreme-value index and generalized quantile plots
    Beirlant, J
    Dierckx, G
    Guillou, A
    [J]. BERNOULLI, 2005, 11 (06) : 949 - 970
  • [8] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [9] Bermudez PD, 2003, TEST, V12, P259
  • [10] Biau G, 2012, J MACH LEARN RES, V13, P1063