Robust Estimation of State of Charge in Lithium Iron Phosphate Cells Enabled by Online Parameter Estimation and Deep Neural Networks

被引:0
|
作者
Shi, Junzhe [1 ]
Kato, Dylan [1 ]
Jiang, Shida [1 ]
Dangwal, Chitra [1 ]
Moura, Scott [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94703 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 03期
基金
美国国家科学基金会;
关键词
Energy systems; State of Charge Estimation; Lithium Iron Phosphate; Neural Network; Kalman filter; Parameter and state estimation; Energy Storage; ION BATTERIES; SENSOR BIAS;
D O I
10.1016/j.ifacol.2023.12.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the state of charge estimation problem in lithium iron phosphate (LFP) battery cells. LFP cells are particularly challenging because their flat open circuit voltage (OCV) curve means OCV-based battery models are weakly observable. This means standard methods for SOC estimation don't easily converge to the true SOC. Additionally, in practice, estimates must be accurate in the face of biased noise on current input, as well as mean-zero noise on measurements. As such, we aim to create an estimator that is accurate when facing these types of noise. We accomplish this with a three-layer estimation technique that uses an adaptive Kalman filter, a Neural Network, and a Kalman Filter to estimate the state of charge. This method achieves an SOC estimation with an RMSE of 2.248%, even in the presence of a 0.2A current measurement bias and 5mA and 5mV random measurement noise. Notably, the proposed approach outperforms state-of-the-art methods like the extended Kalman filter. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [31] State of Health Estimation of Lithium Batteries for Automotive Applications with Artificial Neural Networks
    Bonfitto, Angelo
    Ezemobi, Ethelbert
    Amati, Nicola
    Feraco, Stefano
    Tonoli, Andrea
    Hegde, Shailesh
    2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,
  • [32] Deep learning and data augmentation for robust battery state of charge estimation in electric vehicles
    Elachhab, Anass
    Laadissi, El Mehdi
    Tabine, Abdelhakim
    Hajjaji, Abdelowahed
    ELECTRICAL ENGINEERING, 2024,
  • [33] An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit
    Li, Chaoran
    Xiao, Fei
    Fan, Yaxiang
    ENERGIES, 2019, 12 (09)
  • [34] State of charge estimation of lithium-ion batteries based on an improved parameter identification method
    Xia, Bizhong
    Chen, Chaoren
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGY, 2015, 90 : 1426 - 1434
  • [35] A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks
    Bonfitto, Angelo
    ENERGIES, 2020, 13 (10)
  • [36] Continual learning for online state of charge estimation across diverse lithium-ion batteries
    Yao, Jiaqi
    Zheng, Bowen
    Kowal, Julia
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [37] A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries
    Khan, Zeeshan Ahmad
    Shrivastava, Prashant
    Amrr, Syed Muhammad
    Mekhilef, Saad
    Algethami, Abdullah A.
    Seyedmahmoudian, Mehdi
    Stojcevski, Alex
    SUSTAINABILITY, 2022, 14 (12)
  • [38] State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Emadi, Ali
    JOURNAL OF POWER SOURCES, 2018, 400 : 242 - 255
  • [39] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [40] Adaptive Integral Correction-Based State of Charge Estimation Strategy for Lithium-Ion Cells
    Vishnu, C.
    Saleem, Abdul
    IEEE ACCESS, 2022, 10 : 69499 - 69510