Robust Subspace Learning with Double Graph Embedding

被引:0
|
作者
Huang, Zhuojie [1 ]
Zhao, Shuping [1 ]
Liang, Zien [1 ]
Wu, Jigang [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VII | 2024年 / 14431卷
关键词
Low-rank representation; Graph embedding; Feature extraction; Subspace learning; FACE RECOGNITION; REPRESENTATION; PROJECTIONS;
D O I
10.1007/978-981-99-8540-1_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-rank-based methods are frequently employed for dimensionality reduction and feature extraction in machine learning. To capture local structures, these methods often incorporate graph embedding, which requires constructing a zero-one weighted neighborhood graph to extract local information from the original data. However, these methods are incapable of learning an adaptive graph that reveals intricate relationships among distinct samples within noisy data. To address this issue, we propose a novel unsupervised feature extraction method called Robust Subspace Learning with Double Graph Embedding (RSL_DGE). RSL_DGE incorporates a low-rank graph into the graph embedding process to preserve more discriminative information and remove noise simultaneously. Additionally, the l(2,1)-norm constraint is also imposed on the projection matrix, making RSL_DGE more flexible in selecting feature dimensions. Several experiments demonstrate that RSL_DGE achieves competitive performance compared to other state-of-the-art methods.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
  • [31] Cross-modal Metric Learning with Graph Embedding
    Zhang, Youcai
    Gu, Xiaodong
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 758 - 764
  • [32] Combination subspace graph learning for cross-modal retrieval
    Xu, Gongwen
    Li, Xiaomei
    Shi, Lin
    Zhang, Zhijun
    Zhai, Aidong
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1333 - 1343
  • [33] Incremental and robust learning of subspace representations
    Skocaj, Danijel
    Leonardis, Ales
    IMAGE AND VISION COMPUTING, 2008, 26 (01) : 27 - 38
  • [34] Unsupervised Graph Embedding via Adaptive Graph Learning
    Zhang, Rui
    Zhang, Yunxing
    Lu, Chengjun
    Li, Xuelong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5329 - 5336
  • [35] Ranking Graph Embedding for Learning to Rerank
    Pang, Yanwei
    Ji, Zhong
    Jing, Peiguang
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (08) : 1292 - 1303
  • [36] ROBUST GRAPH EMBEDDING VIA SELF-SUPERVISED GRAPH DENOISING
    Han, Wang
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [37] Robust graph embedding via Attack-aid Graph Denoising
    Qin, Zhili
    Wang, Han
    Yu, Zhongjing
    Yang, Qinli
    Shao, Junming
    INFORMATION SCIENCES, 2024, 678
  • [38] Graph Embedding with Similarity Metric Learning
    Tao, Tao
    Wang, Qianqian
    Ruan, Yue
    Li, Xue
    Wang, Xiujun
    SYMMETRY-BASEL, 2023, 15 (08):
  • [39] Orthogonal Principal Coefficients Embedding for Unsupervised Subspace Learning
    Xu, Xinxing
    Xiao, Shijie
    Yi, Zhang
    Peng, Xi
    Liu, Yong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 10 (02) : 280 - 289
  • [40] Locality Preserving Robust Regression for Jointly Sparse Subspace Learning
    Liu, Ning
    Lai, Zhihui
    Li, Xuechen
    Chen, Yudong
    Mo, Dongmei
    Kong, Heng
    Shen, Linlin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (06) : 2274 - 2287