Synchronization Analysis of Christiaan Huygens' Coupled Pendulums

被引:2
|
作者
Wei, Bin [1 ]
机构
[1] Texas A&M Univ Kingsville, Dept Mech & Ind Engn, 700 Univ Blvd, Kingsville, TX 78363 USA
关键词
coupled pendulums; synchronization; harmonic forcing; Christiaan Huygens; normal mode; KURAMOTO;
D O I
10.3390/axioms12090869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discovers a new finding regarding Christiaan Huygens' coupled pendulums. The reason Christiaan Huygens' coupled pendulums obtain synchrony is that the coupled pendulums are subject to a harmonic forcing. As the coupled pendulums swing back and forth, they generate a harmonic force, which, in turn drives the coupled pendulums, such that the two pendulums swing in synchrony once the angular frequency of the generated harmonic forcing satisfies a certain condition. The factor that determines the angular frequency of the generated harmonic forcing is the effective length of the pendulum, as its angular frequency solely depends on the length of the pendulum that swings about a fixed point. In other words, it is the effective length of the coupled pendulum that determines whether the coupled pendulum achieves synchrony or not. The novelty of this article is that the author explains and analyzes the synchronization behaviour of Christiaan Huygens' coupled pendulums from the frequency and harmonic-forcing perspectives.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Chaotic synchronization in a pair of pendulums attached to driven structure
    Karmazyn, Anna
    Balcerzak, Marek
    Perlikowski, Przemyslaw
    Stefanski, Andrzej
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 105 : 261 - 267
  • [22] Adiabatic invariants of two pendulums coupled by a spring
    Silva Jr, R. S.
    Silva Jr, O. S.
    Miltao, M. S. R.
    EUROPEAN JOURNAL OF PHYSICS, 2019, 40 (04)
  • [23] Huygens' synchronization experiment revisited: luck or skill?
    Yang, Jiao
    Wang, Yan
    Yu, Yizhen
    Xiao, Jinghua
    Wang, Xingang
    EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (05)
  • [24] Synchronization Analysis in Models of Coupled Oscillators
    Toso, Guilherme
    Breve, Fabricio
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 889 - 904
  • [25] Synchronization analysis of coupled noncoherent oscillators
    Kurths, Juergen
    Romano, M. Carmen
    Thiel, Marco
    Osipov, Grigory V.
    Ivanchenko, Mikhail V.
    Kiss, Istvan Z.
    Hudson, John L.
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 135 - 149
  • [26] Synchronization Analysis of Coupled Noncoherent Oscillators
    Jürgen Kurths
    M. Carmen Romano
    Marco Thiel
    Grigory V. Osipov
    Mikhail V. Ivanchenko
    István Z. Kiss
    John L. Hudson
    Nonlinear Dynamics, 2006, 44 : 135 - 149
  • [27] Global analysis of synchronization in coupled maps
    Jost, Juergen
    Kolwankar, Kiran M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3695 - 3703
  • [28] Bistability of Rotational Modes in a System of Coupled Pendulums
    Smirnov, Lev A.
    Kryukov, Alexey K.
    Osipov, Grigory V.
    Kurths, Juergen
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (7-8) : 849 - 861
  • [29] Analysis of synchronization for coupled hybrid systems
    Zheng, Li
    Wisniewski, Rafeal
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 85 - +
  • [30] Synchronization of Chaotic Systems with Huygens-like Coupling
    Pena Ramirez, Jonatan
    Arellano-Delgado, Adrian
    Mendez-Ramirez, Rodrigo
    Estrada-Garcia, Hector Javier
    MATHEMATICS, 2024, 12 (20)