Synchronization Analysis of Christiaan Huygens' Coupled Pendulums

被引:2
|
作者
Wei, Bin [1 ]
机构
[1] Texas A&M Univ Kingsville, Dept Mech & Ind Engn, 700 Univ Blvd, Kingsville, TX 78363 USA
关键词
coupled pendulums; synchronization; harmonic forcing; Christiaan Huygens; normal mode; KURAMOTO;
D O I
10.3390/axioms12090869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discovers a new finding regarding Christiaan Huygens' coupled pendulums. The reason Christiaan Huygens' coupled pendulums obtain synchrony is that the coupled pendulums are subject to a harmonic forcing. As the coupled pendulums swing back and forth, they generate a harmonic force, which, in turn drives the coupled pendulums, such that the two pendulums swing in synchrony once the angular frequency of the generated harmonic forcing satisfies a certain condition. The factor that determines the angular frequency of the generated harmonic forcing is the effective length of the pendulum, as its angular frequency solely depends on the length of the pendulum that swings about a fixed point. In other words, it is the effective length of the coupled pendulum that determines whether the coupled pendulum achieves synchrony or not. The novelty of this article is that the author explains and analyzes the synchronization behaviour of Christiaan Huygens' coupled pendulums from the frequency and harmonic-forcing perspectives.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Controlled synchronization of coupled pendulums by Koopman Model Predictive Control
    Do, Loi
    Korda, Milan
    Hurak, Zdenek
    CONTROL ENGINEERING PRACTICE, 2023, 139
  • [2] When two coupled pendulums equal one: A synchronization machine
    Smith, HJT
    Blackburn, JA
    Baker, GL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 7 - 18
  • [3] Synchronization structures in the chain of rotating pendulums
    Munyaev, Vyacheslav O.
    Khorkin, Dmitry S.
    Bolotov, Maxim I.
    Smirnov, Lev A.
    Osipov, Grigory V.
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2117 - 2125
  • [4] Synchronization structures in the chain of rotating pendulums
    Vyacheslav O. Munyaev
    Dmitry S. Khorkin
    Maxim I. Bolotov
    Lev A. Smirnov
    Grigory V. Osipov
    Nonlinear Dynamics, 2021, 104 : 2117 - 2125
  • [5] Dynamics and integrability analysis of two pendulums coupled by a spring
    Szuminski, Wojciech
    Wozniak, Dariusz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [6] Language as Scientific Instrument: a Preliminary Digital Analysis of Christiaan Huygens' Last Writings and Correspondence
    Marinucci, Ludovica
    JLIS.IT, 2018, 9 (02): : 1 - 17
  • [7] SYNCHRONIZATION OF SLOWLY ROTATING PENDULUMS
    Czolczynski, K.
    Perlikowski, P.
    Stefanski, A.
    Kapitaniak, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05):
  • [8] Identification of energy dependent synchronization in coupled pendulums using semi-analytical method
    Dhar, Aalokeparno
    Krishna, I. R. Praveen
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 142
  • [9] Stochastic synchronization of rotating parametric pendulums
    Panagiotis Alevras
    Daniil Yurchenko
    Arvid Naess
    Meccanica, 2014, 49 : 1945 - 1954
  • [10] Stochastic synchronization of rotating parametric pendulums
    Alevras, Panagiotis
    Yurchenko, Daniil
    Naess, Arvid
    MECCANICA, 2014, 49 (08) : 1945 - 1954