Surface modulation for highly efficient and stable perovskite solar cells

被引:5
|
作者
Bai, Dongliang [1 ]
Zheng, Dexu [3 ]
Yang, Shaoan [2 ]
Yu, Fengyang [2 ]
Zhu, Xuejie [1 ]
Peng, Lei [3 ]
Wang, Likun [2 ]
Liu, Jishuang [3 ]
Yang, Dong [2 ]
Liu, Shengzhong [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Minist Educ,Shaanxi Key Lab Adv Energy Devices,Sha, Xian 710119, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] China Natl Nucl Power Co Ltd, Beijing 100097, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRON-TRANSPORT LAYER; PASSIVATION; METAL;
D O I
10.1039/d3ra00809f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Defects formed by halide ion escape and wettability of the perovskite absorber are essential limiting factors in achieving high performance of perovskite solar cells (PSCs). Herein, a series of ionic organic modulators are designed to contain halide anions to prevent defect formation and improve the surface tension of the perovskite absorber. It was found that the surface modulator containing Br anions is the most effective one due to its capability in bonding with the undercoordinated Pb2+ ions to reduce charge recombination. Moreover, this surface modulator effectively creates a suitable energy level between the perovskite and hole transport layer to promote carrier transfer. In addition, the surface modulator forms a chemisorbed capping layer on the perovskite surface to improve its hydrophobicity. As a result, the efficiency of PSCs based on surface modulators containing Br anion enhances to 23.32% from 21.08% of the control device. The efficiency of unencapsulated PSCs with a surface modulator retains 75.42% of its initial value under about 35% humidity stored in the air for 28 days, while the control device only maintained 44.49% of its initial efficiency. The excellent stability originates from the hydrophobic perovskite surface after capping the surface modulator. As halogen is found to affect both passivation and hydrophobicity ability, a series of ionic organic modulators are designed to contain the halide anions not only to prevent defect formation but also to improve surface tension of the perovskite absorber.
引用
收藏
页码:28097 / 28103
页数:7
相关论文
共 50 条
  • [1] Surface modulation of halide perovskite films for efficient and stable solar cells
    戴沁煊
    骆超
    王显进
    高峰
    姜晓乐
    赵清
    Chinese Physics B, 2022, 31 (03) : 39 - 50
  • [2] Surface modulation of halide perovskite films for efficient and stable solar cells
    Dai, Qinxuan
    Luo, Chao
    Wang, Xianjin
    Gao, Feng
    Jiang, Xiaole
    Zhao, Qing
    CHINESE PHYSICS B, 2022, 31 (03)
  • [3] Modulation on Electrostatic Potential of Passivator for Highly Efficient and Stable Perovskite Solar Cells
    Su, Hang
    Zhang, Jing
    Hu, Yingjie
    Yao, Yuying
    Zheng, Xinxin
    She, Yutong
    Jia, Binxia
    Gao, Lili
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (34)
  • [4] Highly Efficient and Stable Perovskite Solar Cells by Introducing a Multifunctional Surface Modulator
    Zhuang, Rongshan
    Wang, Peng
    Wang, Linqin
    Lai, Qian
    Qiu, Junming
    Chen, Yinjuan
    Zhang, Xiaoliang
    Sun, Licheng
    Hua, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (07)
  • [5] Surface passivation by CTAB toward highly efficient and stable perovskite solar cells
    Sha, Nian
    Bala, Hari
    Zhang, Bowen
    Zhang, Wei
    An, Xiangli
    Chen, Diandian
    Zhao, Zhiyong
    APPLIED SURFACE SCIENCE, 2023, 635
  • [6] The Rise of Highly Efficient and Stable Perovskite Solar Cells
    Graetzel, Michael
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (03) : 487 - 491
  • [7] Dual-site molecule induced multifunctional surface modulation for highly efficient and stable inverted perovskite solar cells
    Wu, Rongfei
    Miao, Wenjing
    Yin, Ran
    Sun, Weiwei
    Sun, Yansheng
    Wang, Kexiang
    You, Tingting
    Yin, Penggang
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [8] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu Y.
    Li Y.
    Xing G.
    Cao D.
    Materials Today Advances, 2022, 16
  • [9] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu, Yajie
    Li, Yang
    Xing, Guichuan
    Cao, Derong
    MATERIALS TODAY ADVANCES, 2022, 16
  • [10] Tailoring passivators for highly efficient and stable perovskite solar cells
    Zhang, Hong
    Pfeifer, Lukas
    Zakeeruddin, Shaik M.
    Chu, Junhao
    Gratzel, Michael
    NATURE REVIEWS CHEMISTRY, 2023, 7 (09) : 632 - 652