Overview of High-Dimensional Measurement Error Regression Models

被引:2
作者
Luo, Jingxuan [1 ]
Yue, Lili [2 ]
Li, Gaorong [1 ]
机构
[1] Beijing Normal Univ, Sch Stat, Beijing 100875, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金; 英国科研创新办公室;
关键词
convex optimization; estimation; high-dimensional data; hypothesis testing; measurement error; variable selection; LIKELIHOOD CONFIDENCE REGION; GENERALIZED LINEAR-MODELS; VARIABLE SELECTION; NONPARAMETRIC REGRESSION; DANTZIG SELECTOR; SPARSE RECOVERY; ESTIMATORS; INFERENCE; TESTS; REGULARIZATION;
D O I
10.3390/math11143202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
High-dimensional measurement error data are becoming more prevalent across various fields. Research on measurement error regression models has gained momentum due to the risk of drawing inaccurate conclusions if measurement errors are ignored. When the dimension p is larger than the sample size n, it is challenging to develop statistical inference methods for high-dimensional measurement error regression models due to the existence of bias, nonconvexity of the objective function, high computational cost and many other difficulties. Over the past few years, some works have overcome the aforementioned difficulties and proposed several novel statistical inference methods. This paper mainly reviews the current development on estimation, hypothesis testing and variable screening methods for high-dimensional measurement error regression models and shows the theoretical results of these methods with some directions worthy of exploring in future research.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A comparison study of Bayesian high-dimensional linear regression models
    Shin, Ju-Won
    Lee, Kyoungjae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (03) : 491 - 505
  • [42] Transfer learning for sparse variable selection in high-dimensional regression from quadratic measurement
    Shang, Qingxu
    Li, Jie
    Song, Yunquan
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [43] Prediction in abundant high-dimensional linear regression
    Cook, R. Dennis
    Forzani, Liliana
    Rothman, Adam J.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3059 - 3088
  • [44] High-dimensional predictive regression in the presence of cointegration
    Koo, Bonsoo
    Anderson, Heather M.
    Seo, Myung Hwan
    Yao, Wenying
    JOURNAL OF ECONOMETRICS, 2020, 219 (02) : 456 - 477
  • [45] A nonparametric Bayesian technique for high-dimensional regression
    Guha, Subharup
    Baladandayuthapani, Veerabhadran
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3374 - 3424
  • [46] Identifying a Minimal Class of Models for High-dimensional Data
    Nevo, Daniel
    Ritov, Ya'acov
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [47] High-Dimensional Sparse Additive Hazards Regression
    Lin, Wei
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 247 - 264
  • [48] Converting high-dimensional regression to high-dimensional conditional density estimation
    Izbicki, Rafael
    Lee, Ann B.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2800 - 2831
  • [49] Bayesian stein-type shrinkage estimators in high-dimensional linear regression models
    Zanboori, Ahmadreza
    Zanboori, Ehsan
    Mousavi, Maryam
    Mirjalili, Sayyed Mahmoud
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1889 - 1914
  • [50] A STEPWISE REGRESSION METHOD AND CONSISTENT MODEL SELECTION FOR HIGH-DIMENSIONAL SPARSE LINEAR MODELS
    Ing, Ching-Kang
    Lai, Tze Leung
    STATISTICA SINICA, 2011, 21 (04) : 1473 - 1513