High-dimensional measurement error data are becoming more prevalent across various fields. Research on measurement error regression models has gained momentum due to the risk of drawing inaccurate conclusions if measurement errors are ignored. When the dimension p is larger than the sample size n, it is challenging to develop statistical inference methods for high-dimensional measurement error regression models due to the existence of bias, nonconvexity of the objective function, high computational cost and many other difficulties. Over the past few years, some works have overcome the aforementioned difficulties and proposed several novel statistical inference methods. This paper mainly reviews the current development on estimation, hypothesis testing and variable screening methods for high-dimensional measurement error regression models and shows the theoretical results of these methods with some directions worthy of exploring in future research.
机构:
Univ Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R ChinaUniv Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R China
Chen, Zhihong
Zhu, Yanling
论文数: 0引用数: 0
h-index: 0
机构:
Univ Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R ChinaUniv Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R China
Zhu, Yanling
Zhu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USAUniv Int Business & Econ, Sch Int Trade & Econ, Beijing 100029, Peoples R China
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Wang, Yi
Zeng, Donglin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Zeng, Donglin
Wang, Yuanjia
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USAShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Wang, Yuanjia
Tong, Xingwei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Stat, Beijing 100875, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Ren, Mingyang
Zhang, Sanguo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Zhang, Sanguo
Zhang, Qingzhao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Dept Stat, Wang Yanan Inst Studies Econ, MOE Key Lab Econ,Sch Econ, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Key Lab Stat, Xiamen 361005, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
机构:
Univ Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USAUniv Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USA
Zhang, Shushu
He, Xuming
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ St Louis, St Louis, MO USAUniv Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USA
He, Xuming
Tan, Kean Ming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USAUniv Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USA
Tan, Kean Ming
Zhou, Wen-Xin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Chicago, IL USAUniv Michigan, Dept Stat, 436 West Hall,1085 South Univ, Ann Arbor, MI 48109 USA