AN ACCELERATED SHRINKING PROJECTION ALGORITHM FOR SOLVING THE SPLIT VARIATIONAL INCLUSION PROBLEM IN REFLEXIVE BANACH SPACES

被引:0
作者
Liu, Xindong [1 ,2 ]
Liu, Min [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Yibin Univ, Fac Sci, Yibin 644000, Sichuan, Peoples R China
关键词
Split variational inclusion problem; inertial method; shrinking projection algorithm; Bregman projection; reflexive Banach spaces; STRONG-CONVERGENCE THEOREMS; NULL POINT PROBLEM; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study the split variational inclusion problem in the framework of reflexive Banach spaces. In order to solve the problem, we propose a shrinking projection algorithm with inertial technique method and establish a strong convergence theorem. we also utilize our result to study the split variational inclusion problem in uniformly convex and uniformly smooth Banach spaces and the split convex minimization problem in reflexive Banach spaces. Finally, for supporting the convergence of the proposed algorithm, we also consider a numerical experiment.
引用
收藏
页码:889 / 903
页数:15
相关论文
共 30 条
[1]  
Alber Y., 1996, LECT NOTES PURE APPL, P15
[2]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[3]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[4]  
Bonnans J. F., 2000, Perturbation Analysis of Optimization Problems
[5]  
Bregman L., 1967, USSR Comput. Math. Math. Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[6]  
Butnariu D., 2000, Applied Optimization, V40
[7]   ON APPROXIMATE CONTROLLABILITY FOR SYSTEMS OF FRACTIONAL EVOLUTION HEMIVARIATIONAL INEQUALITIES WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES [J].
Ceng, L. C. ;
Cho, S. Y. .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (04) :421-438
[8]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[9]   Shrinking projection method for solving inclusion problem and fixed point problem in reflexive Banach spaces [J].
Chang, Shih-sen ;
Yao, J. C. ;
Wen, Ching-Feng ;
Qin, Li Juan .
OPTIMIZATION, 2021, 70 (09) :1921-1936
[10]   Generalized viscosity implicit rules for solving quasi-inclusion problems of accretive operators in Banach spaces [J].
Chang, Shih-sen ;
Wen, Ching-Feng ;
Yao, Jen-Chih .
OPTIMIZATION, 2017, 66 (07) :1105-1117