The Cycle-Concentrating PEG Algorithm for Protograph Generalized LDPC Codes

被引:0
作者
Yun, Dae-Young [1 ]
Kim, Jae-Won [2 ]
Kwak, Hee-Youl [3 ]
No, Jong-Seon [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Gyeongsang Natl Univ, Engn Res Inst ERI, Dept Elect Engn, Jinju 52828, South Korea
[3] Univ Ulsan, Dept Elect Engn, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized low-density parity-check (GLDPC) codes; progressive edge growth (PEG) algorithm; protograph; quasi-cyclic LDPC (QC-LDPC) codes; CONSTRUCTION; DESIGN;
D O I
10.1109/ACCESS.2023.3284314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose the cycle-concentrating progressive edge growth (CC-PEG) algorithm for lifting protograph generalized low-density parity-check (GLDPC) codes. In GLDPC codes, undoped variable nodes (VNs) that are not connected to generalized constraint (GC) nodes are more vulnerable to channel errors than doped VNs protected by GC nodes. We observe that among GLDPC codes sharing the same protograph structure, codes with fewer local cycles at undoped VNs have better decoding performances. Inspired by this observation, the CC-PEG algorithm is proposed to concentrate local cycles at doped VNs and avoid local cycles at vulnerable undoped VNs during the lifting process. Specifically, the CC-PEG algorithm first collects edges that result in the maximum undoped girth, defined as the length of the shortest cycle containing undoped VNs. Following this, the CC-PEG algorithm selects the edge with the lowest concentrated cycle metric. Consequently, the lifted codes exhibit asymmetric cycle distributions concentrated around robust doped VNs. Simulation results for various protographs show that the CC-PEG algorithm achieves a performance gain of up to 20 times lower frame error rate compared to conventional lifting algorithms.
引用
收藏
页码:57285 / 57294
页数:10
相关论文
共 21 条
[1]   Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes [J].
Abu-Surra, Shadi ;
Divsalar, Dariush ;
Ryan, William E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :858-886
[2]   Regular and irregular progressive edge-growth tanner graphs [J].
Hu, XY ;
Eleftheriou, E ;
Arnold, DM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :386-398
[3]   Improved progressive-edge-growth (PEG) construction of irregular LDPC codes [J].
Hua, X ;
Banihashemi, AH .
IEEE COMMUNICATIONS LETTERS, 2004, 8 (12) :715-717
[4]   Construction of Protograph-Based Partially Doped Generalized LDPC Codes [J].
Kim, Jaewha ;
Kim, Jae-Won ;
Kwak, Hee-Youl ;
No, Jong-Seon .
IEEE ACCESS, 2022, 10 :95462-95478
[5]   Factor graphs and the sum-product algorithm [J].
Kschischang, FR ;
Frey, BJ ;
Loeliger, HA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :498-519
[6]   Exact Erasure Channel Density Evolution for Protograph-Based Generalized LDPC Codes [J].
Lentmaier, Michael ;
Tavares, Marcos B. S. ;
Fettweis, Gerhard P. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, :566-570
[7]   Design of Binary LDPC Codes With Parallel Vector Message Passing [J].
Liu, Xingcheng ;
Xiong, Feng ;
Wang, Zhongfeng ;
Liang, Shuo .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (04) :1363-1375
[8]   A Probabilistic Peeling Decoder to Efficiently Analyze Generalized LDPC Codes Over the BEC [J].
Liu, Yanfang ;
Olmos, Pablo M. ;
Koch, Tobias .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) :4831-4853
[9]   Generalized LDPC Codes for Ultra Reliable Low Latency Communication in 5G and Beyond [J].
Liu, Yanfang ;
Olmos, Pablo M. ;
Mitchell, David G. M. .
IEEE ACCESS, 2018, 6 :72002-72014
[10]   Quasi-cyclic generalized LDPC codes with low error floors [J].
Liva, Gianluigi ;
Ryan, William E. ;
Chiani, Marco .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (01) :49-57