HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection

被引:86
作者
Suo, Jiashun [1 ,2 ]
Wang, Tianyi [3 ]
Zhang, Xingzhou [3 ]
Chen, Haiyang [1 ,2 ]
Zhou, Wei [1 ,2 ]
Shi, Weisong [4 ]
机构
[1] Yunnan Univ, Engn Res Ctr Cyberspace, Kunming 650091, Peoples R China
[2] Yunnan Univ, Sch Software, Kunming 650091, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Res Ctr Distributed Syst, Beijing 100190, Peoples R China
[4] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1038/s41597-023-02066-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the HIT-UAV dataset, a high-altitude infrared thermal dataset for object detection applications on Unmanned Aerial Vehicles (UAVs). The dataset comprises 2,898 infrared thermal images extracted from 43,470 frames in hundreds of videos captured by UAVs in various scenarios, such as schools, parking lots, roads, and playgrounds. Moreover, the HIT-UAV provides essential flight data for each image, including flight altitude, camera perspective, date, and daylight intensity. For each image, we have manually annotated object instances with bounding boxes of two types (oriented and standard) to tackle the challenge of significant overlap of object instances in aerial images. To the best of our knowledge, the HIT-UAV is the first publicly available high-altitude UAV-based infrared thermal dataset for detecting persons and vehicles. We have trained and evaluated well-established object detection algorithms on the HIT-UAV. Our results demonstrate that the detection algorithms perform exceptionally well on the HIT-UAV compared to visual light datasets, since infrared thermal images do not contain significant irrelevant information about objects. We believe that the HIT-UAV will contribute to various UAV-based applications and researches.
引用
收藏
页数:11
相关论文
共 30 条
[1]   The Use of UAVs in Humanitarian Relief: An Application of POMDP-Based Methodology for Finding Victims [J].
Bittencourt Bravo, Raissa Zurli ;
Leiras, Adriana ;
Cyrino Oliveira, Fernando Luiz .
PRODUCTION AND OPERATIONS MANAGEMENT, 2019, 28 (02) :421-440
[2]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934]
[3]  
Bondi E, 2020, IEEE WINT CONF APPL, P1736, DOI [10.1109/WACV45572.2020.9093284, 10.1109/wacv45572.2020.9093284]
[4]  
Bozcan I, 2020, IEEE INT CONF ROBOT, P8504, DOI [10.1109/ICRA40945.2020.9196845, 10.1109/icra40945.2020.9196845]
[5]  
Chen K, 2019, Arxiv, DOI [arXiv:1906.07155, 10.48550/arXiv.1906.07155]
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
DJI, 2021, MATR M210 V2
[8]  
DJI, 2021, ZENM XT2
[9]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[10]  
Heintz Fredrik, 2007, 10th Conference of the International Society of Information Fusion, P1