AI in Computational Pathology of Cancer: Improving DiagnosticWorkflows and Clinical Outcomes?

被引:13
作者
Cifci, Didem [1 ]
Veldhuizen, Gregory P. [2 ]
Foersch, Sebastian [3 ]
Kather, Jakob Nikolas [1 ,2 ,4 ,5 ]
机构
[1] Rhein Wesrfal TH, Univ Hosp RWTH, Dept Med 3, Aachen, Germany
[2] Tech Univ Dresden, Univ Hosp Carl Gustav Carus Dresden, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[3] Univ Med Ctr Mainz, Dept Pathol, Mainz, Germany
[4] Univ Hosp Heidelberg, Natl Ctr Tumor Dis, Dept Med Oncol, Heidelberg, Germany
[5] Univ Leeds, Leeds Inst Med Res St Jamess, Div Pathol & Data Analyt, Leeds, W Yorkshire, England
关键词
machine learning; deep learning; oncology; tumor; biomarkers; histopathology; ARTIFICIAL-INTELLIGENCE; HISTOPATHOLOGICAL IMAGES; SURVIVAL PREDICTION; PROSTATE-CANCER; DEEP; DIAGNOSIS; BIOMARKERS; SIGNATURES; FUSION;
D O I
10.1146/annurev-cancerbio-061521-092038
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Histopathology plays a fundamental role in the diagnosis and subtyping of solid tumors and has become a cornerstone of modern precision oncology. Histopathological evaluation is typically performed manually by expert pathologists due to the complexity of visual data. However, in the last ten years, new artificial intelligence (AI) methods have made it possible to train computers to perform visual tasks with high performance, reaching similar levels as experts in some applications. In cancer histopathology, these AI tools could help automate repetitive tasks, making more efficient use of pathologists' time. In research studies, AI methods have been shown to have an astounding ability to predict genetic alterations and identify prognostic and predictive biomarkers directly from routine tissue slides. Here, we give an overview of these recent applications of AI in computational pathology, focusing on new tools for cancer research that could be pivotal in identifying clinical biomarkers for better treatment decisions.
引用
收藏
页码:57 / 71
页数:15
相关论文
共 85 条
[1]   Immune checkpoint inhibitors of PD-L1 as cancer therapeutics [J].
Akinleye, Akintunde ;
Rasool, Zoaib .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (01)
[2]   What is next generation sequencing? [J].
Behjati, Sam ;
Tarpey, Patrick S. .
ARCHIVES OF DISEASE IN CHILDHOOD-EDUCATION AND PRACTICE EDITION, 2013, 98 (06) :236-238
[3]   Morphological and molecular breast cancer profiling through explainable machine learning [J].
Binder, Alexander ;
Bockmayr, Michael ;
Hagele, Miriam ;
Wienert, Stephan ;
Heim, Daniel ;
Hellweg, Katharina ;
Ishii, Masaru ;
Stenzinger, Albrecht ;
Hocke, Andreas ;
Denkert, Carsten ;
Mueller, Klaus-Robert ;
Klauschen, Frederick .
NATURE MACHINE INTELLIGENCE, 2021, 3 (04) :355-366
[4]   Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises [J].
Bone, Daniel ;
Goodwin, Matthew S. ;
Black, Matthew P. ;
Lee, Chi-Chun ;
Audhkhasi, Kartik ;
Narayanan, Shrikanth .
JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2015, 45 (05) :1121-1136
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]  
Chatterjee Shailja, 2014, J Oral Maxillofac Pathol, V18, pS111, DOI 10.4103/0973-029X.141346
[7]  
Chen RJ, 2022, IEEE T MED IMAGING, V41, P757, DOI [10.1109/TITS.2020.3030218, 10.1109/TMI.2020.3021387]
[8]  
Chen ST, 2022, Arxiv, DOI arXiv:2204.03257
[9]   Artificial intelligence to identify genetic alterations in conventional histopathology [J].
Cifci, Didem ;
Foersch, Sebastian ;
Kather, Jakob Nikolas .
JOURNAL OF PATHOLOGY, 2022, 257 (04) :430-444
[10]  
Ciga O, 2020, MACH LEARN APPL, V7