Effectiveness of Radiomic ZOT Features in the Automated Discrimination of Oncocytoma from Clear Cell Renal Cancer

被引:5
作者
Carlini, Gianluca [1 ]
Gaudiano, Caterina [2 ]
Golfieri, Rita [2 ]
Curti, Nico [3 ]
Biondi, Riccardo [4 ]
Bianchi, Lorenzo [5 ]
Schiavina, Riccardo [5 ]
Giunchi, Francesca [6 ]
Faggioni, Lorenzo [7 ]
Giampieri, Enrico [3 ]
Merlotti, Alessandra [1 ]
Dall'Olio, Daniele [1 ]
Sala, Claudia [4 ]
Pandolfi, Sara [1 ]
Remondini, Daniel [1 ,8 ]
Rustici, Arianna [2 ,9 ]
Pastore, Luigi Vincenzo [2 ]
Scarpetti, Leonardo [10 ]
Bortolani, Barbara [3 ]
Cercenelli, Laura [3 ]
Brunocilla, Eugenio [5 ]
Marcelli, Emanuela [3 ]
Coppola, Francesca [2 ,10 ,11 ]
Castellani, Gastone [4 ]
机构
[1] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy
[2] IRCCS Azienda Osped Univ Bologna, Dept Radiol, I-40138 Bologna, Italy
[3] Univ Bologna, Dept Med & Surg Sci, eDIMESLab, I-40138 Bologna, Italy
[4] Univ Bologna, Dept Med & Surg Sci, I-40138 Bologna, Italy
[5] IRCCS Azienda Osped Univ Bologna, Div Urol, I-40138 Bologna, Italy
[6] IRCCS Azienda Osped Univ Bologna, Dept Pathol, I-40138 Bologna, Italy
[7] Univ Pisa, Dept Translat Res, Acad Radiol, I-56126 Rome, Italy
[8] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, I-40127 Bologna, Italy
[9] Univ Bologna, Dept Biomed & Neuromotor Sci, I-40138 Bologna, Italy
[10] AUSL Romagna, UOC Radiol Faenza, Dipartimento Diagnost Immagini, I-48018 Faenza, Italy
[11] SIRM Fdn, Italian Soc Med & Intervent Radiol, I-40138 Bologna, Italy
来源
JOURNAL OF PERSONALIZED MEDICINE | 2023年 / 13卷 / 03期
关键词
computer-aided diagnosis; image analysis; radiomic; machine learning; renal oncocytoma; renal cell carcinoma; small renal masses; computed tomography; COMPUTED-TOMOGRAPHY; PARTIAL NEPHRECTOMY; TUMOR VOLUME; CARCINOMA; IMPACT; MASS;
D O I
10.3390/jpm13030478
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Benign renal tumors, such as renal oncocytoma (RO), can be erroneously diagnosed as malignant renal cell carcinomas (RCC), because of their similar imaging features. Computer-aided systems leveraging radiomic features can be used to better discriminate benign renal tumors from the malignant ones. The purpose of this work was to build a machine learning model to distinguish RO from clear cell RCC (ccRCC). Method: We collected CT images of 77 patients, with 30 cases of RO (39%) and 47 cases of ccRCC (61%). Radiomic features were extracted both from the tumor volumes identified by the clinicians and from the tumor's zone of transition (ZOT). We used a genetic algorithm to perform feature selection, identifying the most descriptive set of features for the tumor classification. We built a decision tree classifier to distinguish between ROs and ccRCCs. We proposed two versions of the pipeline: in the first one, the feature selection was performed before the splitting of the data, while in the second one, the feature selection was performed after, i.e., on the training data only. We evaluated the efficiency of the two pipelines in cancer classification. Results: The ZOT features were found to be the most predictive by the genetic algorithm. The pipeline with the feature selection performed on the whole dataset obtained an average ROC AUC score of 0.87 +/- 0.09. The second pipeline, in which the feature selection was performed on the training data only, obtained an average ROC AUC score of 0.62 +/- 0.17. Conclusions: The obtained results confirm the efficiency of ZOT radiomic features in capturing the renal tumor characteristics. We showed that there is a significant difference in the performances of the two proposed pipelines, highlighting how some already published radiomic analyses could be too optimistic about the real generalization capabilities of the models.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning [J].
Baghdadi, Amir ;
Aldhaam, Naif A. ;
Elsayed, Ahmed S. ;
Hussein, Ahmed A. ;
Cavuoto, Lora A. ;
Kauffman, Eric ;
Guru, Khurshid A. .
BJU INTERNATIONAL, 2020, 125 (04) :553-560
[2]   Percutaneous ablation or minimally invasive partial nephrectomy for cT1a renal masses? A propensity score-matched analysis [J].
Bianchi, Lorenzo ;
Chessa, Francesco ;
Piazza, Pietro ;
Ercolino, Amelio ;
Mottaran, Angelo ;
Recenti, Dario ;
Serra, Carla ;
Gaudiano, Caterina ;
Cappelli, Alberta ;
Modestino, Francesco ;
Golfieri, Rita ;
Bertaccini, Alessandro ;
Marcelli, Emanuela ;
Porreca, Angelo ;
Celia, Antonio ;
Schiavina, Riccardo .
INTERNATIONAL JOURNAL OF UROLOGY, 2022, 29 (03) :222-228
[3]   Percutaneous tumor ablation versus partial nephrectomy for small renal mass: the impact of histologic variant and tumor size [J].
Bianchi, Lorenzo ;
Mineo Bianchi, Federico ;
Chessa, Francesco ;
Barbaresi, Umberto ;
Casablanca, Carlo ;
Piazza, Pietro ;
Mottaran, Angelo ;
Droghetti, Matteo ;
Roveroni, Carlo ;
Balestrazzi, Eleonora ;
Gentile, Giorgio ;
Gaudiano, Caterina ;
Bertaccini, Alessandro ;
Marcelli, Emanuela ;
Porreca, Angelo ;
De Concilio, Bernardino ;
Serra, Carla ;
Celia, Antonio ;
Brunocilla, Eugenio ;
Schiavina, Riccardo .
MINERVA UROLOGY AND NEPHROLOGY, 2021, 73 (05) :581-590
[4]   Interpreting nephrometry scores with three-dimensional virtual modelling for better planning of robotic partial nephrectomy and predicting complications [J].
Bianchi, Lorenzo ;
Schiavina, Riccardo ;
Bortolani, Barbara ;
Cercenelli, Laura ;
Gaudiano, Caterina ;
Carpani, Giulia ;
Rustici, Arianna ;
Droghetti, Matteo ;
Mottaran, Angelo ;
Boschi, Sara ;
Salvador, Marco ;
Chessa, Francesco ;
Cochetti, Giovanni ;
Golfieri, Rita ;
Bertaccini, Alessandro ;
Marcelli, Emanuela .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2021, 39 (12) :836.e1-836.e9
[5]   Novel Volumetric and Morphological Parameters Derived from Three-dimensional Virtual Modeling to Improve Comprehension of Tumor's Anatomy in Patients with Renal Cancer [J].
Bianchi, Lorenzo ;
Schiavina, Riccardo ;
Bortolani, Barbara ;
Cercenelli, Laura ;
Gaudiano, Caterian ;
Mottaran, Angelo ;
Droghetti, Matteo ;
Chessa, Francesco ;
Boschi, Sara ;
Molinaroli, Enrico ;
Balestrazzi, Eleonora ;
Costa, Francesco ;
Rustici, Arianna ;
Carpani, Giulia ;
Piazza, Pietro ;
Cappelli, Alberta ;
Bertaccini, Alessandro ;
Golfieri, Rita ;
Marcelli, Emanuela ;
Brunocilla, Eugenio .
EUROPEAN UROLOGY FOCUS, 2022, 8 (05) :1300-1308
[6]   Which patients with clinical localized renal mass would achieve the trifecta after partial nephrectomy? The impact of surgical technique [J].
Bianchi, Lorenzo ;
Schiavina, Riccardo ;
Borghesi, Marco ;
Chessa, Francesco ;
Casablanca, Carlo ;
Angiolini, Andrea ;
Ercolino, Amelio ;
Pultrone, Cristian Vincenzo ;
Bianchi, Federico Mineo ;
Barbaresi, Umberto ;
Piazza, Pietro ;
Manferrari, Fabio ;
Bertaccini, Alessandro ;
Fiorentino, Michelangelo ;
Ferro, Matteo ;
Porreca, Angelo ;
Marcelli, Emanuela ;
Brunocilla, Eugenio .
MINERVA UROLOGICA E NEFROLOGICA, 2020, 72 (03) :339-349
[7]   The Impact of 3D Digital Reconstruction on the Surgical Planning of Partial Nephrectomy: A Case-control Study. Still Time for a Novel Surgical Trend? [J].
Bianchi, Lorenzo ;
Barbaresi, Umberto ;
Cercenelli, Laura ;
Bortolani, Barbara ;
Gaudiano, Caterina ;
Chessa, Francesco ;
Angiolini, Andrea ;
Lodi, Simone ;
Porreca, Angelo ;
Bianchi, Federico Mineo ;
Casablanca, Carlo ;
Ercolino, Amelio ;
Bertaccini, Alessandro ;
Golfieri, Rita ;
Marcelli, Emanuela ;
Schiavina, Riccardo .
CLINICAL GENITOURINARY CANCER, 2020, 18 (06) :E669-E678
[8]   Prediction of Overall Survival in Cervical Cancer Patients Using PET/CT Radiomic Features [J].
Carlini, Gianluca ;
Curti, Nico ;
Strolin, Silvia ;
Giampieri, Enrico ;
Sala, Claudia ;
Dall'Olio, Daniele ;
Merlotti, Alessandra ;
Fanti, Stefano ;
Remondini, Daniel ;
Nanni, Cristina ;
Strigari, Lidia ;
Castellani, Gastone .
APPLIED SCIENCES-BASEL, 2022, 12 (12)
[9]   CT-based multi-phase Radiomic models for differentiating clear cell renal cell carcinoma [J].
Chen, Menglin ;
Yin, Fu ;
Yu, Yuanmeng ;
Zhang, Haijie ;
Wen, Ge .
CANCER IMAGING, 2021, 21 (01)
[10]   Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm [J].
Chong, Huan-Huan ;
Yang, Li ;
Sheng, Ruo-Fan ;
Yu, Yang-Li ;
Wu, Di-Jia ;
Rao, Sheng-Xiang ;
Yang, Chun ;
Zeng, Meng-Su .
EUROPEAN RADIOLOGY, 2021, 31 (07) :4824-4838