Multifactorial mapping of QTL for partitioning of assimilates under drought stress in wheat (Triticum aestivum L.)

被引:0
|
作者
Hamza, Hamza [1 ]
Asghari, Ali [2 ]
Mohammadi, Seyed Abulghasem [3 ]
Shams, Mostafakamal [4 ]
机构
[1] Agr Res Educ & Extens Org AREEO, Agr & Nat Resources Res Ctr Hamedan, Hamadan, Iran
[2] Univ Mohaghegh Ardabil, Fac Agr, Ardebil, Iran
[3] Univ Tabriz, Fac Agr, Dept Plant Breeding & Biotechnol, Tabriz, Iran
[4] Univ Gdansk, Fac Biol, Dept Plant Physiol & Biotechnol, Gdansk, Poland
关键词
Assimilates partitioning; Chromosomes; Linkage map; Microsatellite marker; QUANTITATIVE TRAIT LOCI; IDENTIFICATION; YIELD; ACCUMULATION; RESISTANCE; MARKERS; BARLEY;
D O I
10.1007/s40502-023-00714-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Crops' capability to store photosynthetic resources in the pre-flowering stage and successfully re-transport the stored photoassimilates in the seed-filling stage plays a significant role in the development of the final grain yield, and identifying the genetic structure of this mechanism can help breeders develop high-yielding cultivars. For this purpose, to map quantitative trait loci (QTLs) affecting assimilates partitioning in wheat under drought stress, we used 148 recombinant inbred lines derived from a cross between two winter wheat cultivars, 'YecoraRojo' and Iranian landrace (No. #49). Linkage mapping was performed using 51 retrotransposons and 177 microsatellite markers. Under normal irrigation conditions, four QTLs were identified for assimilates partitioning (R-A(2) = 7.68-13.36%), and 10 additives additive epistatic interactions (R-AA(2) = 2.08-10.47%) and 12 QTLs x QTL x environment interactions (R-AAE(2) = 0.78-17.4) were significant. Under the water deficit condition, three QTLs (R-A(2) = 7.02-7.78%) were identified, and eight additives x additive epistasis interactions (R-AA(2) = 2.44-10.9%) were significant. The mapped QTLs are located on chromosomes 4A, 6A, and 7A, indicating their critical role in controlling assimilates partitioning in wheat. The results indicate that QTLs flanked by Wmc786-5LTR.2/ISSR9.170 and Cfa2123- Gwm282 markers on the 6A and 7A chromosomes are stable under drought stress, which could be advantageous for marker-assisted selection.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [31] Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance
    Kanbar, Osama Zuhair
    Chege, Paul
    Lantos, Csaba
    Kiss, Erzsebet
    Pauk, Janos
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2020, 18 (05): : 369 - 381
  • [32] Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.)
    Abou-Elwafa, Salah Fatouh
    Shehzad, Tariq
    GENETIC RESOURCES AND CROP EVOLUTION, 2021, 68 (02) : 711 - 728
  • [33] Agronomic Performance of Seeds of Some Bread Wheat (Triticum aestivum L.) Cultivars Exposed to Drought Stress Triticum aestivum
    Balkan, Alpay
    JOURNAL OF TEKIRDAG AGRICULTURE FACULTY-TEKIRDAG ZIRAAT FAKULTESI DERGISI, 2019, 16 (01): : 82 - 91
  • [34] Major QTL for Seven Yield-Related Traits in Common Wheat (Triticum aestivum L.)
    Jin, Jingjing
    Liu, Dan
    Qi, Yongzhi
    Ma, Jun
    Zhen, Wenchao
    FRONTIERS IN GENETICS, 2020, 11
  • [35] Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.)
    Xue, Shulin
    Xu, Feng
    Tang, Mingzhi
    Zhou, Yan
    Li, Guoqiang
    An, Xia
    Lin, Feng
    Xu, Haibin
    Jia, Haiyan
    Zhang, Lixia
    Kong, Zhongxin
    Ma, Zhengqiang
    THEORETICAL AND APPLIED GENETICS, 2011, 123 (06) : 1055 - 1063
  • [36] Mapping QTL conferring speckled snow mold resistance in winter wheat (Triticum aestivum L.)
    Nishio, Zenta
    Iriki, Norio
    Ito, Miwako
    Tabiki, Tadashi
    Murray, Timothy
    BREEDING SCIENCE, 2020, 70 (02) : 246 - 252
  • [37] Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.)
    Xue, Shulin
    Xu, Feng
    Li, Guoqiang
    Zhou, Yan
    Lin, Musen
    Gao, Zhongxia
    Su, Xiuhong
    Xu, Xiaowu
    Jiang, Ge
    Zhang, Shuang
    Jia, Haiyan
    Kong, Zhongxin
    Zhang, Lixia
    Ma, Zhengqiang
    THEORETICAL AND APPLIED GENETICS, 2013, 126 (08) : 1941 - 1949
  • [38] Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments
    Bennett, Dion
    Reynolds, Matthew
    Mullan, Daniel
    Izanloo, Ali
    Kuchel, Haydn
    Langridge, Peter
    Schnurbusch, Thorsten
    THEORETICAL AND APPLIED GENETICS, 2012, 125 (07) : 1473 - 1485
  • [39] GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.)
    Zhao, Qiuyan
    Ma, Yan
    Huang, Xianqing
    Song, Lianjun
    Li, Ning
    Qiao, Mingwu
    Li, Tiange
    Hai, Dan
    Cheng, Yongxia
    PLANTS-BASEL, 2023, 12 (13):
  • [40] Assessment of grain yield indices in response to drought stress in wheat ( Triticum aestivum L.)
    Anwaar, Hafiz Arslan
    Perveen, Rashida
    Mansha, Muhammad Zeeshan
    Abid, Muhammad
    Sarwar, Zahid Mahmood
    Aatif, Hafiz Muhammad
    Umar, Ummad Ud Din
    Sajid, Muhammad
    Aslam, Hafiz Muhammad Usman
    Alam, Muhammad Mohsin
    Rizwan, Muhammad
    Ikram, Rao Muhammad
    Alghanem, Suliman Mohammed Suliman
    Rashid, Abdul
    Khan, Khalid Ali
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2020, 27 (07) : 1818 - 1823