P1-nonconforming quadrilateral finite element space with periodic boundary conditions: Part II. Application to the nonconforming heterogeneous multiscale method

被引:1
作者
Yim, Jaeryun [1 ]
Sheen, Dongwoo [2 ,4 ]
Sim, Imbo [3 ]
机构
[1] Encored Inc, Honolulu, HI USA
[2] Seoul Natl Univ, Dept Math, Seoul, South Korea
[3] Dong A Univ, Dept Mech Engn, Busan, South Korea
[4] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
heterogeneous multiscale method; homogenization; nonconforming finite element method; ELLIPTIC PROBLEMS; STATIONARY STOKES; HOMOGENIZATION; CONVERGENCE; MSFEM;
D O I
10.1002/num.23009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A homogenization approach is one of effective strategies to solve multiscale elliptic problems approximately. The finite element heterogeneous multiscale method (FEHMM) which is based on the finite element makes possible to simulate such process numerically. In this paper we introduce a FEHMM scheme for multiscale elliptic problems based on nonconforming elements. In particular we use the noconforming element with the periodic boundary condition introduced in the companion paper. Theoretical analysis derives a priori error estimates in the standard Sobolev norms. Several numerical results which confirm our analysis are provided.
引用
收藏
页码:3309 / 3331
页数:23
相关论文
共 50 条
  • [31] The variational multiscale method - a paradigm for computational mechanics
    Hughes, TJR
    Feijoo, GR
    Mazzei, L
    Quincy, JB
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) : 3 - 24
  • [32] Multi-scale finite-volume method for elliptic problems in subsurface flow simulation
    Jenny, P
    Lee, SH
    Tchelepi, HA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 47 - 67
  • [33] Stable cheapest nonconforming finite elements for the Stokes equations
    Kim, Sihwan
    Yim, Jaeryun
    Sheen, Dongwoo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 2 - 14
  • [34] AN MSFEM TYPE APPROACH FOR PERFORATED DOMAINS
    Le Bris, Claude
    Legoll, Frederic
    Lozinski, Alexei
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (03) : 1046 - 1077
  • [35] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [36] A locking-free nonconforming finite element method for planar linear elasticity
    Lee, CO
    Lee, J
    Sheen, D
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (1-3) : 277 - 291
  • [37] Finite element method multi-scale for the Stokes problem
    Lozinski, Alexei
    Mghazli, Zoubida
    Blal, Khallih Ould Ahmed Ould
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (7-8) : 271 - 275
  • [38] A quadrilateral nonconforming finite element for linear elasticity problem
    Mao, Shipeng
    Chen, Shaochun
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (01) : 81 - 100
  • [39] TRIANGULAR EQUILIBRIUM ELEMENT IN SOLUTION OF PLATE BENDING PROBLEMS
    MORLEY, LSD
    [J]. AERONAUTICAL QUARTERLY, 1968, 19 : 149 - &
  • [40] NONCONFORMING MULTISCALE FINITE ELEMENT METHOD FOR STOKES FLOWS IN HETEROGENEOUS MEDIA. PART I: METHODOLOGIES AND NUMERICAL EXPERIMENTS
    Muljadi, B. P.
    Narski, J.
    Lozinski, A.
    Degond, P.
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (04) : 1146 - 1172