Quantitative versions of the two-dimensional Gaussian product inequalities

被引:5
作者
Hu, Ze-Chun [1 ]
Zhao, Han [1 ]
Zhou, Qian-Qian [2 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian product-inequality conjecture; Quantitative inequality; Hypergeometric function; 60E15; 62H12; VARIABLES;
D O I
10.1186/s13660-022-02906-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Gaussian product-inequality (GPI) conjecture is one of the most famous inequalities associated with Gaussian distributions and has attracted much attention. In this note, we investigate the quantitative versions of the two-dimensional Gaussian product inequalities. For any centered, nondegenerate, and two-dimensional Gaussian random vector (X1,X2) with E[X12</mml:msubsup>]=E[X22</mml:msubsup>]=1 and the correlation coefficient rho, we prove that for any real numbers alpha 1,alpha 2 is an element of(-1,0) or alpha 1,alpha 2 is an element of (0,infinity), it holds that <disp-formula id="Equa">E[|X1|alpha 1|X2|alpha 2]-E[|X1|alpha 1]E[|X2|alpha 2]>= f(alpha 1,alpha 2,rho)>= 0,<graphic position="anchor" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13660_2022_2906_Article_Equa.gif"></graphic></disp-formula> where the function f(alpha 1,alpha 2,rho) will be given explicitly by the Gamma function and is positive when rho not equal 0. When -1<<mml:msub>alpha 1<0 and <mml:msub>alpha 2>0, Russell and Sun (Statist. Probab. Lett. 191:109656, 2022) proved the "opposite Gaussian product inequality", of which we will also give a quantitative version. These quantitative inequalities are derived by employing the hypergeometric functions and the generalized hypergeometric functions.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
Andrews G. E., 1999, SPECIAL FUNCTIONS
[2]   Lower bounds for norms of products of polynomials [J].
Benítez, C ;
Sarantopoulos, Y ;
Tonge, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :395-408
[3]  
De A., 2021, LIPICS LEIBNIZ INT P, V185
[4]   Quantitative correlation inequalities via extremal power series [J].
De, Anindya ;
Nadimpalli, Shivam ;
Servedio, Rocco A. .
PROBABILITY THEORY AND RELATED FIELDS, 2022, 183 (1-2) :649-675
[5]  
Edelmann D., 2022, ARXIV
[6]  
Frenkel PE, 2008, MATH RES LETT, V15, P351
[7]  
Genest C, 2023, Arxiv, DOI arXiv:2206.01976
[8]   A combinatorial proof of the Gaussian product inequality beyond the MTP2 case [J].
Genest, Christian ;
Ouimet, Frederic .
DEPENDENCE MODELING, 2022, 10 (01) :236-244
[9]  
Herry R., 2022, ARXIV
[10]   TOTAL POSITIVITY PROPERTIES OF ABSOLUTE VALUE MULTINORMAL VARIABLES WITH APPLICATIONS TO CONFIDENCE-INTERVAL ESTIMATES AND RELATED PROBABILISTIC INEQUALITIES [J].
KARLIN, S ;
RINOTT, Y .
ANNALS OF STATISTICS, 1981, 9 (05) :1035-1049