Impacts of modified Chaplygin gas on super-massive neutron stars embedded in quintessence field with f(T) gravity

被引:6
作者
Bandyopadhyay, Mayukh [1 ,2 ]
Biswas, Ritabrata [2 ]
机构
[1] Jadavpur Univ, Dept Phys, Kolkata 700032, West Bengal, India
[2] Univ Burdwan, Dept Math, Golapbag Acad Complex, Burdwan 713104, West Bengal, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2023年 / 32卷 / 03期
关键词
f (T) gravity; neutron stars; Chaplygin gas; quintessence field; exact solution; GRAVITATIONAL WAVES; GENERAL RELATIVITY; EQUATIONS; PULSAR; STATE;
D O I
10.1142/S0218271823500062
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent research works have shown the existence of super-massive neutron stars (NSs) with mass about 2.2M(?) or even more. The query about those super-massive NSs inspires the researchers to analyze their features and structures immensely. Here, we have inspected the behavior and properties of some of those super-massive NSs in f(T) modified gravity with T = T + alpha T-2, where T is the torsional scalar and alpha is a regulatory parameter. In this framework of teleparallel formalism of modified gravity, we obtain the equations of motion by considering quintessence field, modified Chaplygin gas (MCG) and electromagnetic field. For our model, we use matching conditions under spherical symmetry, in order to find out the numerical values of different unknown constants of our model. This helps us to acquire various physical quantities thoroughly and to understand about the nature of those super-massive NSs deeply and quite clearly. Moreover, from our work, we can also explain the role of quintessence field and MCG in case of massive compact stars. The mass-radius relationship curve of this model can effectively describe the mass of the heaviest NS (about 2.6M(?)) ever detected via gravitational wave detection. Again, we overall investigate the anisotropic behavior, density profile, pressure profile, core repulsive force, stability, equilibrium and energy conditions of those massive compact objects. We further analyze different important parameters like anisotropic stress, surface redshift, adiabatic behavior, compactness factor, sound speed, etc. in case of super-massive NSs for better realization and future study.
引用
收藏
页数:28
相关论文
共 96 条
  • [1] Models of anisotropic compact stars in the Rastall theory of gravity
    Abbas, G.
    Shahzad, M. R.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (03)
  • [2] Abbas G, 2015, ASTROPHYS SPACE SCI, V359, DOI 10.1007/s10509-015-2509-y
  • [3] Anisotropic compact stars in f(G) gravity
    Abbas, G.
    Momeni, D.
    Ali, M. Aamir
    Myrzakulov, R.
    Qaisar, S.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (02)
  • [4] GW170817: Measurements of Neutron Star Radii and Equation of State
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aubin, F.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (16)
  • [5] GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aich, A.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akcay, S.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Ansoldi, S.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arne, M.
    Arnaud, N.
    Aronson, S. M.
    Arun, K. G.
    Asali, Y.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V
    Babak, S.
    Bacon, P.
    Badaracco, F.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 896 (02)
  • [6] Aldrovandi R., 2013, Teleparallel Gravity: An Introduction
  • [7] Aldrovandi R., 2013, TELEPARALLEL GRAVITY, V173, P5143
  • [8] Altiparmak S, 2022, Arxiv, DOI arXiv:2203.14974
  • [9] Sharp Bounds on the Critical Stability Radius for Relativistic Charged Spheres
    Andreasson, Hakan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) : 715 - 730
  • [10] Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State
    Annala, Eemeli
    Gorda, Tyler
    Kurkela, Aleksi
    Vuorinen, Aleksi
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (17)