Machine-learning atomic simulation for heterogeneous catalysis

被引:50
作者
Chen, Dongxiao [1 ]
Shang, Cheng [1 ,2 ]
Liu, Zhi-Pan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Key Lab Computat Phys Sci, Shanghai Key Lab Mol Catalysis & Innovat Mat,Dept, Shanghai 200433, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Synthet & Self Assembly Chem Organ Funct M, Shanghai 200032, Peoples R China
基金
美国国家科学基金会;
关键词
SURFACE WALKING METHOD; DENSITY-FUNCTIONAL THEORY; STRUCTURE PREDICTION; GLOBAL OPTIMIZATION; TRANSITION-STATE; ETHYLENE EPOXIDATION; CRYSTAL-STRUCTURE; AMMONIA-SYNTHESIS; PHASE-TRANSITION; CO OXIDATION;
D O I
10.1038/s41524-022-00959-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations. The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in catalysis is outlooked.
引用
收藏
页数:9
相关论文
共 117 条
[41]   Umbrella sampling [J].
Kaestner, Johannes .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (06) :932-942
[42]   Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity [J].
Kang, Pei-Lin ;
Shi, Yun-Fei ;
Shang, Cheng ;
Liu, Zhi-Pan .
CHEMICAL SCIENCE, 2022, 13 (27) :8148-8160
[43]   Reaction prediction via atomistic simulation: from quantum mechanics to machine learning [J].
Kang, Pei-Lin ;
Liu, Zhi-Pan .
ISCIENCE, 2021, 24 (01)
[44]   Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration [J].
Kang, Pei-Lin ;
Shang, Cheng ;
Liu, Zhi-Pan .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (10) :2119-2129
[45]   Glucose to 5-Hydroxymethylfurfural: Origin of Site-Selectivity Resolved by Machine Learning Based Reaction Sampling [J].
Kang, Pei-Lin ;
Shang, Cheng ;
Liuo, Zhi-Pan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (51) :20525-20536
[46]   CATALYSIS Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts [J].
Kattel, Shyam ;
Ramirez, Pedro J. ;
Chen, Jingguang G. ;
Rodriguez, Jose A. ;
Liu, Ping .
SCIENCE, 2017, 355 (6331) :1296-+
[47]   CO Oxidation Mechanism on CeO2-Supported Au Nanoparticles [J].
Kim, Hyun You ;
Lee, Hyuck Mo ;
Henkelman, Graeme .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1560-1570
[48]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[49]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[50]   Machine Learning for Computational Heterogeneous Catalysis [J].
Lamoureux, Philomena Schlexer ;
Winther, Kirsten T. ;
Torres, Jose Antonio Garrido ;
Streibel, Verena ;
Zhao, Meng ;
Bajdich, Michal ;
Abild-Pedersen, Frank ;
Bligaard, Thomas .
CHEMCATCHEM, 2019, 11 (16) :3579-3599