Machine-learning atomic simulation for heterogeneous catalysis

被引:49
作者
Chen, Dongxiao [1 ]
Shang, Cheng [1 ,2 ]
Liu, Zhi-Pan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Key Lab Computat Phys Sci, Shanghai Key Lab Mol Catalysis & Innovat Mat,Dept, Shanghai 200433, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Synthet & Self Assembly Chem Organ Funct M, Shanghai 200032, Peoples R China
基金
美国国家科学基金会;
关键词
SURFACE WALKING METHOD; DENSITY-FUNCTIONAL THEORY; STRUCTURE PREDICTION; GLOBAL OPTIMIZATION; TRANSITION-STATE; ETHYLENE EPOXIDATION; CRYSTAL-STRUCTURE; AMMONIA-SYNTHESIS; PHASE-TRANSITION; CO OXIDATION;
D O I
10.1038/s41524-022-00959-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations. The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in catalysis is outlooked.
引用
收藏
页数:9
相关论文
共 117 条
[1]   Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8075-8098
[2]   Si-Doped Fe Catalyst for Ammonia Synthesis at Dramatically Decreased Pressures and Temperatures [J].
An, Qi ;
Mcdonald, Molly ;
Fortunelli, Alessandro ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (18) :8223-8232
[3]   Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT plus U [J].
Bajaj, Akash ;
Kulik, Heather J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) :1142-1155
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]   Four Generations of High-Dimensional Neural Network Potentials [J].
Behler, Joerg .
CHEMICAL REVIEWS, 2021, 121 (16) :10037-10072
[6]   First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems [J].
Behler, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12828-12840
[7]   Enhanced sampling techniques in molecular dynamics simulations of biological systems [J].
Bernardi, Rafael C. ;
Melo, Marcelo C. R. ;
Schulten, Klaus .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (05) :872-877
[8]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[9]   Acid and basic catalysis [J].
Bronsted, JN .
CHEMICAL REVIEWS, 1928, 5 (03) :231-338
[10]   Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe5C2 Hagg Carbide [J].
Broos, Robin J. P. ;
Zijlstra, Bart ;
Filot, Ivo A. W. ;
Hensen, Emiel J. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) :9929-9938