Global multiplicity of solutions to a defocusing quasilinear Schrodinger equation with the singular term

被引:0
作者
Chen, Siyu [1 ]
Santos, Carlos Alberto [2 ]
Yang, Minbo [1 ]
Zhou, Jiazheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, Brazil
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger equation; singular term; square diffusion term; ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS; DIRICHLET PROBLEM; EXISTENCE; BIFURCATION; CONVECTION; GROWTH;
D O I
10.1007/s11425-022-2002-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of modified quasilinear Schrodinger equations -Delta u + k/2u Delta u(2) = lambda a(x)u(-alpha) + b(x)u(beta) in Omega with u(x) = 0 on partial derivative Omega, where Omega subset of R-N is a bounded domain with a regular boundary, N >= 3, a and b are bounded mensurable functions, 0 < alpha < 1 < beta < 2* - 1 and k, lambda >= 0 are two parameters. We establish the global existence and multiplicity results of positive solutions in H-0(1)(Omega) boolean AND L-infinity(Omega) for appropriate classes of parameters k and A and coefficients a(x) and b(x).
引用
收藏
页码:1789 / 1812
页数:24
相关论文
共 34 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[3]   Multiplicity of negative-energy solutions for singular-superlinear Schrodinger equations with indefinite-sign potential [J].
Alves, Ricardo Lima ;
Santos, Carlos Alberto ;
Silva, Kaye .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (10)
[4]   Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity [J].
Arcoya, David ;
Moreno-Merida, Lourdes .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :281-291
[5]  
Arcoya D, 2013, DIFFER INTEGRAL EQU, V26, P119
[6]   Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities [J].
Badiale, M ;
Tarantello, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (06) :639-677
[7]   Boundary value problems associated with singular strongly nonlinear equations with functional terms [J].
Biagi, Stefano ;
Calamai, Alessandro ;
Marcelli, Cristina ;
Papalini, Francesca .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :684-706
[8]   Analytic global bifurcation and infinite turning points for very singular problems [J].
Bougherara, B. ;
Giacomoni, J. ;
Prashanth, S. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) :829-856
[9]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[10]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64