共 2 条
Commuting tuple of multiplication operators homogeneous under the unitary group
被引:1
|作者:
Ghara, Soumitra
[1
]
Kumar, Surjit
[2
]
Misra, Gadadhar
[3
,4
]
Pramanick, Paramita
[5
]
机构:
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur, India
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[3] Indian Stat Inst, Stat & Math Unit, Bangalore, India
[4] Indian Inst Technol, Dept Math, Gandhinagar, India
[5] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, India
来源:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
|
2024年
/
109卷
/
04期
关键词:
KERNELS;
SPACES;
D O I:
10.1112/jlms.12890
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let U(d) be the group of d x d unitary matrices. We find conditions to ensure that a U(d)-homogeneous d-tuple T is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space H-K(B-d, C-n)subset of Hol (B-d, C-n), n=dim boolean AND(d)(j=1 )ker T-& lowast; (j). We describe this class of U(d)-homogeneous operators, equivalently, non-negative kernels K quasi-invariant under the action of U(d). We classify quasi-invariant kernels K transforming under U(d) with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d) has exactly two inequivalent irreducible unitary representations of dimension d and none in dimensions 2,& mldr;,d-1, d >= 3. We obtain explicit criterion for boundedness, reducibility and mutual unitary equivalence among these operators
引用
收藏
页数:37
相关论文