Predictors of in-ICU length of stay among congenital heart defect patients using artificial intelligence model: A pilot study

被引:5
作者
Chang Junior, Joao [1 ,2 ,3 ]
Caneo, Luiz Fernando
Turquetto, Aida Luiza Ribeiro [4 ]
Amato, Luciana Patrick [4 ]
Arita, Elisandra Cristina Trevisan Calvo
Fernandes, Alfredo Manoel da Silva
Trindade, Evelinda Marramon [3 ,4 ,6 ]
Jatene, Fabio Biscegli [1 ]
Dossou, Paul-Eric [5 ,7 ]
Jatene, Marcelo Biscegli
机构
[1] Univ Sao Paulo, Hosp Clin HCFMUSP, Inst Coracao InCor, Av Dr Eneas Carvalho Aguiar,44, BR-05403000 Sao Paulo, Brazil
[2] Escola Super Engn & Gestao ESEG, Rua Apeninos, 960, Sao Paulo, Brazil
[3] Ctr Univ Armando Alvares Penteado, FAAP, Rua Alagoas,903, Sao Paulo, Brazil
[4] Superintende ncia Hosp Clin FMUSP, Lab Ensino, Pesquisa & Inovacao Saude LEP HCFMUSP, Rua Dr Ovidio Pires Campos, Andar-Superintendencia, Rua Dr, 225, Sao Paulo, Brazil
[5] Hosp Clin FMUSP, Superintendencia, Lab Ensino Pesquisa & Inovacao Saude LEP HCFMUSP, Rua Dr Ovidio Pires Campos,225,5 Andar Superintend, Sao Paulo, Brazil
[6] Sao Paulo State Hlth Secretariat SES SP, Sao Paulo, Brazil
[7] Inst Catholique Arts & Metiers Icam, Paris, France
基金
巴西圣保罗研究基金会;
关键词
Congenital heart disease; ICU-LOS prediction; Machine learning; PyCaret library; Light gradient boosting machine; Congenital heart surgery; Artificial intelligence; MORTALITY PREDICTION;
D O I
10.1016/j.heliyon.2024.e25406
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aims to develop a predictive model using artificial intelligence to estimate the ICU length of stay (LOS) for Congenital Heart Defects (CHD) patients after surgery, improving care planning and resource management. Design: We analyze clinical data from 2240 CHD surgery patients to create and validate the predictive model. Twenty AI models are developed and evaluated for accuracy and reliability. Setting: The study is conducted in a Brazilian hospital's Cardiovascular Surgery Department, focusing on transplants and cardiopulmonary surgeries. Participants: Retrospective analysis is conducted on data from 2240 consecutive CHD patients undergoing surgery. Interventions: Ninety-three pre and intraoperative variables are used as ICU LOS predictors. Measurements and main results: Utilizing regression and clustering methodologies for ICU LOS (ICU Length of Stay) estimation, the Light Gradient Boosting Machine, using regression, achieved a Mean Squared Error (MSE) of 15.4, 11.8, and 15.2 days for training, testing, and unseen data. Key predictors included metrics such as "Mechanical Ventilation Duration", "Weight on Surgery Date", and "Vasoactive-Inotropic Score". Meanwhile, the clustering model, Cat Boost Classifier, attained an accuracy of 0.6917 and AUC of 0.8559 with similar key predictors. Conclusions: Patients with higher ventilation times, vasoactive-inotropic scores, anoxia time, cardiopulmonary bypass time, and lower weight, height, BMI, age, hematocrit, and presurgical oxygen saturation have longer ICU stays, aligning with existing literature.
引用
收藏
页数:11
相关论文
共 22 条
[1]  
Alsinglawi B, 2020, IEEE ENG MED BIO, P5442, DOI [10.1109/EMBC44109.2020.9175889, 10.1109/embc44109.2020.9175889]
[2]   Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach [J].
Awad, Aya ;
Bader-El-Den, Mohamed ;
McNicholas, James ;
Briggs, Jim .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 108 :185-195
[3]   Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach [J].
Bertsimas, Dimitris ;
Zhuo, Daisy ;
Dunn, Jack ;
Levine, Jordan ;
Zuccarelli, Eugenio ;
Smyrnakis, Nikos ;
Tobota, Zdzislaw ;
Maruszewski, Bohdan ;
Fragata, Jose ;
Sarris, George E. .
WORLD JOURNAL FOR PEDIATRIC AND CONGENITAL HEART SURGERY, 2021, 12 (04) :453-460
[4]   The RACHS-1 risk categories reflect mortality and length of hospital stay in a large German pediatric cardiac surgery population [J].
Boethig, D ;
Jenkins, KJ ;
Hecker, H ;
Thies, WR ;
Breymann, T .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2004, 26 (01) :12-17
[5]   Cross-validation methods [J].
Browne, MW .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) :108-132
[6]  
Carmona F, 2017, BRAZ J CARDIOV SURG, V32, P260
[7]   Effects of physical training on functional status in patients with prolonged mechanical ventilation [J].
Chiang, Ling-Ling ;
Wang, Li-Ying ;
Wu, Chin-Pyng ;
Wu, Huey-Dong ;
Wu, Ying Tai .
PHYSICAL THERAPY, 2006, 86 (09) :1271-1281
[8]   The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation [J].
Chicco, Davide ;
Warrens, Matthijs J. ;
Jurman, Giuseppe .
PEERJ COMPUTER SCIENCE, 2021,
[9]   Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards [J].
Churpek, Matthew M. ;
Yuen, Trevor C. ;
Winslow, Christopher ;
Meltzer, David O. ;
Kattan, Michael W. ;
Edelson, Dana P. .
CRITICAL CARE MEDICINE, 2016, 44 (02) :368-374
[10]   Methodological Issues in Predicting Pediatric Epilepsy Surgery Candidates Through Natural Language Processing and Machine Learning [J].
Cohen, Kevin Bretonnel ;
Glass, Benjamin ;
Greiner, Hansel M. ;
Holland-Bouley, Katherine ;
Standridge, Shannon ;
Arya, Ravindra ;
Faist, Robert ;
Morita, Diego ;
Mangano, Francesco ;
Connolly, Brian ;
Glauser, Tracy ;
Pestian, John .
BIOMEDICAL INFORMATICS INSIGHTS, 2016, 8 :11-18