Some examples of noncommutative projective Calabi-Yau schemes

被引:0
作者
Mizuno, Yuki [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Math, Ohkubo 3-4-1,Shinjuku, Tokyo 1698555, Japan
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2024年 / 67卷 / 03期
关键词
Noncommutative algebraic geometry; Noncommutative projective schemes; Calabi-Yau varieties; DUALIZING COMPLEXES; ALGEBRAS; DUALITY;
D O I
10.4153/S0008439524000110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we construct some examples of noncommutative projective Calabi-Yau schemes by using noncommutative Segre products and quantum weighted hypersurfaces. We also compare our constructions with commutative Calabi-Yau varieties and examples constructed in Kanazawa (2015, Journal of Pure and Applied Algebra 219, 2771-2780). In particular, we show that some of our constructions are essentially new examples of noncommutative projective Calabi-Yau schemes.
引用
收藏
页码:706 / 726
页数:21
相关论文
共 38 条
  • [1] NONCOMMUTATIVE PROJECTIVE SCHEMES
    ARTIN, M
    ZHANG, JJ
    [J]. ADVANCES IN MATHEMATICS, 1994, 109 (02) : 228 - 287
  • [2] The point variety of quantum polynomial rings
    Belmans, Pieter
    De Laet, Kevin
    Le Bruyn, Lieven
    [J]. JOURNAL OF ALGEBRA, 2016, 463 : 10 - 22
  • [3] Bondal A, 2003, MOSC MATH J, V3, P1
  • [4] Brodmann M.P., 2012, Local Cohomology: An Algebraic Introduction with Geometric Applications
  • [5] Morita theory for non-commutative noetherian schemes
    Burban, Igor
    Drozd, Yuriy
    [J]. ADVANCES IN MATHEMATICS, 2022, 399
  • [6] Ideal classes of three-dimensional Sklyanin algebras
    de Naeghel, K
    van den Bergh, M
    [J]. JOURNAL OF ALGEBRA, 2004, 276 (02) : 515 - 551
  • [7] Eisenbud D., 2005, GEOMETRY SYZYGIES 2
  • [8] Ginzburg V. G., 2006, PREPRINT
  • [9] Twisted Segre products
    He, Ji-Wei
    Ueyama, Kenta
    [J]. JOURNAL OF ALGEBRA, 2022, 611 : 528 - 560
  • [10] The diagonal subring and the Cohen-Macaulay property of a multigraded ring
    Hyry, E
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) : 2213 - 2232