Gamma-Ray Burst Detection with Poisson-FOCuS and Other Trigger Algorithms

被引:2
作者
Dilillo, Giuseppe [1 ,2 ]
Ward, Kes [3 ]
Eckley, Idris A. [4 ]
Fearnhead, Paul [4 ]
Crupi, Riccardo [2 ,5 ]
Evangelista, Yuri [1 ,6 ]
Vacchi, Andrea [2 ,7 ]
Fiore, Fabrizio [5 ,8 ]
机构
[1] INAF, Ist Astrofis & Planetol Spaziali, Rome, Italy
[2] Univ Udine, Dipartimento Sci Matematiche Informat & Fis, Udine, Italy
[3] Univ Lancaster, Doctoral Training Ctr, STOR i, Lancaster, England
[4] Univ Lancaster, Dept Math & Stat, Lancaster, England
[5] INAF, Osservatorio Astron Trieste, Trieste, Italy
[6] INFN, Sez Roma Tor Vergata, Rome, Italy
[7] INFN, Sez Trieste, Trieste, Italy
[8] IFPU Inst Fundamental Phys Universe, Trieste, Italy
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
CATALOG; ASTROPY; PROJECT; PACKAGE;
D O I
10.3847/1538-4357/ad15ff
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe how a novel online change-point detection algorithm, called Poisson-FOCuS, can be used to optimally detect gamma-ray bursts within the computational constraints imposed by miniaturized satellites such as the upcoming HERMES-Pathfinder constellation. Poisson-FOCuS enables testing for gamma-ray burst onset at all intervals in a count time series, across all timescales and offsets, in real time and at a fraction of the computational cost of conventional strategies. We validate an implementation with automatic background assessment through exponential smoothing, using archival data from Fermi-GBM. Through simulations of lightcurves modeled after real short and long gamma-ray bursts, we demonstrate that the same implementation has higher detection power than algorithms designed to emulate the logic of Fermi-GBM and Compton-BATSE, reaching the performance of a brute-force benchmark with oracle information on the true background rate, when not hindered by automatic background assessment. Finally, using simulated data with different lengths and means, we show that Poisson-FOCuS can analyze data twice as fast as a similarly implemented benchmark emulator for the historic Fermi-GBM on-board trigger algorithms.
引用
收藏
页数:15
相关论文
共 45 条
[1]  
[Anonymous], 2020, JOBLIB RUNNING PYTHO
[2]   ON DETECTING TRANSIENT PHENOMENA [J].
Belanger, G. .
ASTROPHYSICAL JOURNAL, 2013, 773 (01)
[3]   Short-Duration Gamma-Ray Bursts [J].
Berger, Edo .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 52, 2014, 52 :43-105
[4]  
Bhat N., 2023, Untriggered GBM Short GRB Candidates
[5]   A physical background model for the Fermi Gamma-ray Burst Monitor [J].
Biltzinger, B. ;
Kunzweiler, F. ;
Greiner, J. ;
Toelge, K. ;
Burgess, J. Michael .
ASTRONOMY & ASTROPHYSICS, 2020, 640
[6]   Background simulations for the Large Area Detector onboard LOFT [J].
Campana, Riccardo ;
Feroci, Marco ;
Del Monte, Ettore ;
Mineo, Teresa ;
Lund, Niels ;
Fraser, George W. .
EXPERIMENTAL ASTRONOMY, 2013, 36 (03) :451-477
[7]  
Crupi R., 2023, ExA, V56, P421, DOI DOI 10.1007/S10686-023-09915-7
[8]  
David R., 2021, Proceedings of Machine Learning and Systems, V3, P800, DOI DOI 10.48550/ARXIV.2010.08678
[9]  
Dilillo G., 2023, Codebase for the paper "Gamma-ray burst detection using Poisson-FOCuS and other trigger algorithms, DOI [10.5281/zenodo.100694142023zndo..10069414D, DOI 10.5281/ZENODO.100694142023ZNDO..10069414D]
[10]  
Feigelson E. D., 2022, Handbook of X-ray and Gamma-ray Astrophysics, P119