Machine Learning Based Node Selection for UWB Network Localization

被引:0
作者
Gomez-Vega, Carlos A. [1 ,2 ]
Win, Moe Z. [3 ]
Conti, Andrea [1 ,2 ]
机构
[1] Univ Ferrara, Dept Engn, Via Saragat 1, I-44122 Ferrara, Italy
[2] Univ Ferrara, CNIT, Via Saragat 1, I-44122 Ferrara, Italy
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE | 2023年
基金
美国国家科学基金会;
关键词
Localization; node selection; network operation; optimization; machine learning; SENSOR SELECTION; STRATEGIES; NAVIGATION; MODEL;
D O I
10.1109/MILCOM58377.2023.10356323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In location-aware networks, only a subset of nodes provides representative measurements for position inference. Therefore, efficient high-accuracy localization calls for strategies to select an appropriate subset of active nodes. While node selection strategies benefit efficient localization, determining an optimal subset of active nodes relies on knowledge of channel state information whose acquisition overhead can be prohibitive. This paper presents a probabilistic node selection strategy for ultra-wideband network localization based on machine learning. We formulate the node selection problem as a classification task given a position estimate and determine near-optimal access probabilities from training data obtained via model-based optimization. A case study in a 3rd Generation Partnership Project scenario validates the proposed strategy and compares it against uniformly distributed random node selection.
引用
收藏
页数:6
相关论文
共 41 条
  • [1] A Spatial Consistency Model for Geometry-Based Stochastic Channels
    Ademaj, Fjolla
    Schwarz, Stefan
    Berisha, Taulant
    Rupp, Markus
    [J]. IEEE ACCESS, 2019, 7 : 183414 - 183427
  • [2] [Anonymous], 2007, IEEE Std 802.15.4a-2007 (Amendment to IEEE Std 802.15.4-2006), P1
  • [3] Accurate 3D Localization Method for Public Safety Applications in Vehicular Ad-Hoc Networks
    Ansari, Abdul Rahim
    Saeed, Nasir
    Ul Haq, Mian Imtiaz
    Cho, Sunghyun
    [J]. IEEE ACCESS, 2018, 6 : 20756 - 20763
  • [4] Blind Selection of Representative Observations for Sensor Radar Networks
    Bartoletti, Stefania
    Giorgetti, Andrea
    Win, Moe Z.
    Conti, Andrea
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2015, 64 (04) : 1388 - 1400
  • [5] Bishop C M., 2006, Pattern recognition and machine learning, Vvol 4
  • [6] Boyd S., 2004, Convex Optimization
  • [7] Robustness, Security and Privacy in Location-Based Services for Future IoT: A Survey
    Chen, Liang
    Thombre, Sarang
    Jarvinen, Kimmo
    Lohan, Elena Simona
    Alen-Savikko, Anette
    Leppakoski, Helena
    Bhuiyan, M. Zahidul H.
    Bu-Pasha, Shakila
    Ferrara, Giorgia Nunzia
    Honkala, Salomon
    Lindqvist, Jenna
    Ruotsalainen, Laura
    Korpisaari, Paivi
    Kuusniemi, Heidi
    [J]. IEEE ACCESS, 2017, 5 : 8956 - 8977
  • [8] Location Awareness in Beyond 5G Networks
    Conti, Andrea
    Morselli, Flavio
    Liu, Zhenyu
    Bartoletti, Stefania
    Mazuelas, Santiago
    Lindsey, William C.
    Win, Moe Z.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2021, 59 (11) : 22 - 27
  • [9] Network Experimentation for Cooperative Localization
    Conti, Andrea
    Guerra, Matteo
    Dardari, Davide
    Decarli, Nicolo
    Win, Moe Z.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2012, 30 (02) : 467 - 475
  • [10] Cooperative Decentralized Localization Using Scheduled Wireless Transmissions
    Dwivedi, Satyam
    Zachariah, Dave
    De Angelis, Alessio
    Haendel, Peter
    [J]. IEEE COMMUNICATIONS LETTERS, 2013, 17 (06) : 1240 - 1243