Machine learning-based radiomics strategy for prediction of acquired EGFR T790M mutation following treatment with EGFR-TKI in NSCLC

被引:5
作者
Lu, Jiameng [1 ,2 ]
Ji, Xiaoqing [3 ]
Liu, Xinyi [4 ]
Jiang, Yunxiu [4 ]
Li, Gang [5 ]
Fang, Ping [6 ]
Li, Wei [5 ]
Zuo, Anli [4 ]
Guo, Zihan [4 ]
Yang, Shuran [4 ]
Ji, Yanbo [3 ]
Lu, Degan [1 ]
机构
[1] Shandong First Med Univ & Shandong Prov Qianfoshan, Affiliated Hosp 1, Shandong Inst Anesthesia & Resp Crit Med, Shandong Inst Resp Dis,Dept Resp, 16766 Jingshilu, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Sch Microelect, Jinan 250100, Shandong, Peoples R China
[3] Shandong First Med Univ & Shandong Prov Qianfoshan, Affiliated Hosp 1, Dept Nursing, Jinan, Shandong, Peoples R China
[4] Shandong First Med Univ, Grad Sch, Jinan 250000, Shandong, Peoples R China
[5] Shandong First Med Univ & Shandong Prov Qianfoshan, Shandong Lung Canc Inst, Shandong Inst Neuroimmunol, Affiliated Hosp 1,Dept Radiol,Shandong Med & Hlth, Jinan 250000, Shandong, Peoples R China
[6] Shandong First Med Univ & Shandong Prov Qianfoshan, Affiliated Hosp 1, Dept Blood Transfus, Jinan 250014, Shandong, Peoples R China
关键词
CELL LUNG-CANCER; TYROSINE KINASE INHIBITORS; LIQUID BIOPSY; OPEN-LABEL; 1ST-LINE TREATMENT; RESISTANCE; DIAGNOSIS; ONCOLOGY; ADENOCARCINOMA; RADIOGENOMICS;
D O I
10.1038/s41598-023-50984-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The epidermal growth factor receptor (EGFR) Thr790 Met (T790M) mutation is responsible for approximately half of the acquired resistance to EGFR-tyrosine kinase inhibitor (TKI) in non-small-cell lung cancer (NSCLC) patients. Identifying patients at diagnosis who are likely to develop this mutation after first- or second-generation EGFR-TKI treatment is crucial for better treatment outcomes. This study aims to develop and validate a radiomics-based machine learning (ML) approach to predict the T790M mutation in NSCLC patients at diagnosis. We collected retrospective data from 210 positive EGFR mutation NSCLC patients, extracting 1316 radiomics features from CT images. Using the LASSO algorithm, we selected 10 radiomics features and 2 clinical features most relevant to the mutations. We built models with 7 ML approaches and assessed their performance through the receiver operating characteristic (ROC) curve. The radiomics model and combined model, which integrated radiomics features and relevant clinical factors, achieved an area under the curve (AUC) of 0.80 (95% confidence interval [CI] 0.79-0.81) and 0.86 (0.87-0.88), respectively, in predicting the T790M mutation. Our study presents a convenient and noninvasive radiomics-based ML model for predicting this mutation at the time of diagnosis, aiding in targeted treatment planning for NSCLC patients with EGFR mutations.
引用
收藏
页数:14
相关论文
共 79 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   Radiomics and deep learning in lung cancer [J].
Avanzo, Michele ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Sartor, Giovanna .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :879-887
[3]   Nomograms in oncology: more than meets the eye [J].
Balachandran, Vinod P. ;
Gonen, Mithat ;
Smith, J. Joshua ;
DeMatteo, Ronald P. .
LANCET ONCOLOGY, 2015, 16 (04) :E173-E180
[4]   Radiomics and artificial intelligence in lung cancer screening [J].
Binczyk, Franciszek ;
Prazuch, Wojciech ;
Bozek, Pawel ;
Polanska, Joanna .
TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) :1186-1199
[5]   Cell-Free Plasma DNA-Guided Treatment With Osimertinib in Patients With Advanced EGFR- Mutated NSCLC [J].
Buder, Anna ;
Hochmair, Maximilian J. ;
Schwab, Sophia ;
Bundalo, Tatjana ;
Schenk, Peter ;
Errhalt, Peter ;
Mikes, Romana E. ;
Absenger, Gudrun ;
Patocka, Kurt ;
Baumgartner, Bernhard ;
Setinek, Ulrike ;
Burghuber, Otto C. ;
Prosch, Helmut ;
Pirker, Robert ;
Filipits, Martin .
JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (06) :821-830
[6]   Liquid biopsy is a valuable tool in the diagnosis and management of lung cancer [J].
Cecchini, Matthew J. ;
Yi, Eunhee S. .
JOURNAL OF THORACIC DISEASE, 2020, 12 (11) :7048-7056
[7]   Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers [J].
Chapman, Aaron M. ;
Sun, Kathie Y. ;
Ruestow, Peter ;
Cowan, Dallas M. ;
Madl, Amy K. .
LUNG CANCER, 2016, 102 :122-134
[8]   Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives [J].
Chetan, Madhurima R. ;
Gleeson, Fergus V. .
EUROPEAN RADIOLOGY, 2021, 31 (02) :1049-1058
[9]   Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer [J].
Cucchiara, Federico ;
Del Re, Marzia ;
Valleggi, Simona ;
Romei, Chiara ;
Petrini, Iacopo ;
Lucchesi, Maurizio ;
Crucitta, Stefania ;
Rofi, Eleonora ;
De Liperi, Annalisa ;
Chella, Antonio ;
Russo, Antonio ;
Danesi, Romano .
FRONTIERS IN ONCOLOGY, 2020, 10
[10]   Clinical Features and Progression Pattern of Acquired T790M-positive Compared With T790M-negative EGFR Mutant Non-small-cell Lung Cancer: Catching Tumor and Clinical Heterogeneity Over Time Through Liquid Biopsy [J].
Dal Maso, Alessandro ;
Lorenzi, Martina ;
Roca, Elisa ;
Pilotto, Sara ;
Macerelli, Marianna ;
Polo, Valentina ;
Cecere, Fabiana Letizia ;
Del Conte, Alessandro ;
Nardo, Giorgia ;
Buoro, Vanessa ;
Scattolin, Daniela ;
Monteverdi, Sara ;
Urso, Loredana ;
Zulato, Elisabetta ;
Frega, Stefano ;
Bonanno, Laura ;
Indraccolo, Stefano ;
Calabrese, Fiorella ;
Conte, PierFranco ;
Pasello, Giulia .
CLINICAL LUNG CANCER, 2020, 21 (01) :1-+