Boosting the Adversarial Transferability of Surrogate Models with Dark Knowledge

被引:0
|
作者
Yang, Dingcheng [1 ,2 ]
Xiao, Zihao [2 ]
Yu, Wenjian [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci Tech, BNRist, Beijing, Peoples R China
[2] RealAI, Beijing, Peoples R China
关键词
Deep learning; Image classification; Black-box adversarial attack; Transfer-based attack; Dark knowledge;
D O I
10.1109/ICTAI59109.2023.00098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) are vulnerable to adversarial examples. And, the adversarial examples have transferability, which means that an adversarial example for a DNN model can fool another model with a non-trivial probability. This gave birth to the transfer-based attack where the adversarial examples generated by a ate model are used to conduct black-box attacks. There are some work on generating the adversarial examples from a given surrogate model with better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. This paper proposes a method for training a surrogate model with dark knowledge to boost the transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM). The proposed method for training a DSM consists of two key components: a teacher model extracting dark knowledge, and the mixing augmentation skill enhancing dark knowledge of training data. We conducted extensive experiments to show that the proposed method can substantially improve the adversarial transferability of surrogate models across different architectures of surrogate models and optimizers for generating adversarial examples, and it can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification. Our code is publicly available at https://github.com/ydc123/Dark Surrogate Model.
引用
收藏
页码:627 / 635
页数:9
相关论文
共 50 条
  • [1] Boosting the transferability of adversarial CAPTCHAs
    Xu, Zisheng
    Yan, Qiao
    COMPUTERS & SECURITY, 2024, 145
  • [2] StyLess: Boosting the Transferability of Adversarial Examples
    Liang, Kaisheng
    Xiao, Bin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8163 - 8172
  • [3] Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation
    Qin, Zeyu
    Fan, Yanbo
    Liu, Yi
    Shen, Li
    Zhang, Yong
    Wang, Jue
    Wu, Baoyuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial Transferability
    Chen, Bin
    Yin, Jiali
    Chen, Shukai
    Chen, Bohao
    Liu, Ximeng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4466 - 4475
  • [5] Boosting the Transferability of Adversarial Samples via Attention
    Wu, Weibin
    Su, Yuxin
    Chen, Xixian
    Zhao, Shenglin
    King, Irwin
    Lyu, Michael R.
    Tai, Yu-Wing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1158 - 1167
  • [6] Boosting Adversarial Transferability Through Intermediate Feature
    He, Chenghai
    Li, Xiaoqian
    Zhang, Xiaohang
    Zhang, Kai
    Li, Hailing
    Xiong, Gang
    Li, Xuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V, 2023, 14258 : 28 - 39
  • [7] Simple Techniques are Sufficient for Boosting Adversarial Transferability
    Zhang, Chaoning
    Benz, Philipp
    Karjauv, Adil
    Kweon, In So
    Hong, Choong Seon
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8486 - 8494
  • [8] Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability
    Liang, Kaizhao
    Zhang, Jacky Y.
    Wang, Boxin
    Yang, Zhuolin
    Koyejo, Oluwasanmi
    Li, Bo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [9] Boosting adversarial transferability in vision-language models via multimodal feature heterogeneity
    Chen, Long
    Chen, Yuling
    Ouyang, Zhi
    Dou, Hui
    Zhang, Yangwen
    Sang, Haiwei
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] On the Adversarial Transferability of ConvMixer Models
    Iijima, Ryota
    Tanaka, Miki
    Echizen, Isao
    Kiya, Hitoshi
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1826 - 1830