Microenvironment Regulation Strategies Facilitating High-Efficiency CO2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer

被引:9
作者
Yue, Pengtao [1 ,2 ]
Fu, Qian [1 ,2 ]
Li, Jun [1 ,2 ]
Zhang, Liang [1 ,2 ]
Ye, Dingding [1 ,2 ]
Zhu, Xun [1 ,2 ]
Liao, Qiang [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Sch Energy & Power Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical CO2 reduction reaction; localCO(2) transport; local pH; carbon utilizationefficiency; bipolar membrane; PRODUCTS; CELL;
D O I
10.1021/acsami.3c10817
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In alkaline and neutral zero-gap CO2 electrolyzers, the carbon utilization efficiency of the electrocatalytic CO2 reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO2 losses; however, an excessive concentration of H+ in the catalyst layer (CL) significantly hinders the activity and selectivity for CO2 reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO2 transport and the local pH within the CL. We report 80% faradaic efficiency of CO at a current density of 400 mA/cm(2) without the use of a buffering layer, exceeding that of state-of-the-art catalysts with a buffering layer. A carbon utilization efficiency of 63.6% at 400 mA/cm(2) is also obtained. This study demonstrates the significance of regulating the microenvironment of the CL in a BPM system.
引用
收藏
页码:53429 / 53435
页数:7
相关论文
共 24 条
  • [1] High Indirect Energy Consumption in AEM-Based CO2 Electrolyzers Demonstrates the Potential of Bipolar Membranes
    Blommaert, Marijn A.
    Subramanian, Siddhartha
    Yang, Kailun
    Smith, Wilson A.
    Vermaas, David A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 557 - 563
  • [2] CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
    Dinh, Cao-Thang
    Burdyny, Thomas
    Kibria, Md Golam
    Seifitokaldani, Ali
    Gabardo, Christine M.
    de Arquer, F. Pelayo Garcia
    Kiani, Amirreza
    Edwards, Jonathan P.
    De Luna, Phil
    Bushuyev, Oleksandr S.
    Zou, Chengqin
    Quintero-Bermudez, Rafael
    Pang, Yuanjie
    Sinton, David
    Sargent, Edward H.
    [J]. SCIENCE, 2018, 360 (6390) : 783 - 787
  • [3] CO2 electrolysis to multicarbon products in strong acid
    Huang, Jianan Erick
    Li, Fengwang
    Ozden, Adnan
    Rasouli, Armin Sedighian
    de Arquer, F. Pelayo Garcia
    Liu, Shijie
    Zhang, Shuzhen
    Luo, Mingchuan
    Wang, Xue
    Lum, Yanwei
    Xu, Yi
    Bertens, Koen
    Miao, Rui Kai
    Dinh, Cao-Thang
    Sinton, David
    Sargent, Edward H.
    [J]. SCIENCE, 2021, 372 (6546) : 1074 - +
  • [4] Improvement of water management in polymer electrolyte membrane fuel cell thanks to cathode cracks
    Karst, Nicolas
    Faucheux, Vincent
    Martinent, Audrey
    Bouillon, Pierre
    Simonato, Jean-Pierre
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (16) : 5228 - 5234
  • [5] Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings
    Kim, Chanyeon
    Bui, Justin C.
    Luo, Xiaoyan
    Cooper, Jason K.
    Kusoglu, Ahmet
    Weber, Adam Z.
    Bell, Alexis T.
    [J]. NATURE ENERGY, 2021, 6 (11) : 1026 - 1034
  • [6] Defining Nafion Ionomer Roles for Enhancing Alkaline Oxygen Evolution Electrocatalysis
    Li, Guang-Fu
    Yang, Donglei
    Chuang, Po-Ya Abel
    [J]. ACS CATALYSIS, 2018, 8 (12): : 11688 - 11698
  • [7] Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells
    Li, Yuguang C.
    Zhou, Dekai
    Yan, Zhifei
    Goncalves, Ricardo H.
    Salvatore, Danielle A.
    Berlinguette, Curtis P.
    Mallouk, Thomas E.
    [J]. ACS ENERGY LETTERS, 2016, 1 (06): : 1149 - 1153
  • [8] CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment
    Ma, Zesong
    Yang, Zhilong
    Lai, Wenchuan
    Wang, Qiyou
    Qiao, Yan
    Tao, Haolan
    Lian, Cheng
    Liu, Min
    Ma, Chao
    Pan, Anlian
    Huang, Hongwen
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] An industrial perspective on catalysts for low-temperature CO2 electrolysis
    Masel, Richard I.
    Liu, Zengcai
    Yang, Hongzhou
    Kaczur, Jerry J.
    Carrillo, Daniel
    Ren, Shaoxuan
    Salvatore, Danielle
    Berlinguette, Curtis P.
    [J]. NATURE NANOTECHNOLOGY, 2021, 16 (02) : 118 - 128
  • [10] Carbon-efficient carbon dioxide electrolysers
    Ozden, Adnan
    Garcia de Arquer, F. Pelayo
    Huang, Jianan Erick
    Wicks, Joshua
    Sisler, Jared
    Miao, Rui Kai
    O'Brien, Colin P.
    Lee, Geonhui
    Wang, Xue
    Ip, Alexander H.
    Sargent, Edward H.
    Sinton, David
    [J]. NATURE SUSTAINABILITY, 2022, 5 (07) : 563 - 573