Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter

被引:0
|
作者
Nachtsheim, Martin [1 ,2 ]
Grund, Karina [1 ]
Endisch, Christian [1 ]
Kennel, Ralph [2 ]
机构
[1] Tech Hsch Ingolstadt, Inst Innovat Mobil, Ingolstadt, Germany
[2] Tech Univ Munich, Sch Engn & Design, Dept Energy & Proc Engn, Munich, Germany
来源
2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC | 2023年
关键词
Induction Machine; Online Parameter Identification; Extended Kalman Filter; Recursive Least Squares Algorithm; Aging Detection; DIAGNOSIS;
D O I
10.1109/ITEC55900.2023.10186964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.
引用
收藏
页数:6
相关论文
共 9 条
  • [1] Online-Identification of the Induction Machine Parameters Using the Extended Kalman Filter
    Buchholz, Oleg
    Boecker, Joachim
    Bonifacio, Joao
    2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2018, : 1623 - 1629
  • [2] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [3] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588
  • [4] Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter
    Xu, Zheyao
    Qi, Naiming
    Chen, Yukun
    ACTA ASTRONAUTICA, 2015, 117 : 254 - 262
  • [5] Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter
    Xia, Bizhong
    Lao, Zizhou
    Zhang, Ruifeng
    Tian, Yong
    Chen, Guanghao
    Sun, Zhen
    Wang, Wei
    Sun, Wei
    Lai, Yongzhi
    Wang, Mingwang
    Wang, Huawen
    ENERGIES, 2018, 11 (01):
  • [6] Identification of Induction Machine parameters including Core Loss Resistance using Recursive Least Mean Square Algorithm
    Siddavatam, Ravi Prakash Reddy
    Loganathan, Umanand
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 1095 - 1100
  • [7] Rotor Resistance and Speed Identification using Extended Kalman Filter and Fuzzy Logic Controller for Induction Machine Drive
    Douiri, Moulay Rachid
    Cherkaoui, Mohamed
    Douiri, Sidi Mohamed
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 1182 - 1187
  • [8] Multiple Objects Tracking Using Extended Kalman Filter, GMM and Mean Shift Algorithm - A comparative Study
    Santosh, D. Harihara
    Mohan, P. G. Krishna
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1484 - 1488
  • [9] Online Parameter Identification of Lithium-Ion Batteries Using a Novel Multiple Forgetting Factor Recursive Least Square Algorithm
    Xia, Bizhong
    Huang, Rui
    Lao, Zizhou
    Zhang, Ruifeng
    Lai, Yongzhi
    Zheng, Weiwei
    Wang, Huawen
    Wang, Wei
    Wang, Mingwang
    ENERGIES, 2018, 11 (11)