Development and validation of a machine learning model to predict prognosis in HIV-negative cryptococcal meningitis patients: a multicenter study

被引:5
作者
Liu, Junyu [1 ]
Lu, Yaxin [2 ]
Liu, Jia [1 ]
Liang, Jiayin [3 ]
Zhang, Qilong [4 ]
Li, Hua [5 ]
Zhong, Xiufeng [6 ]
Bu, Hui [7 ]
Wang, Zhanhang [8 ]
Fan, Liuxu [1 ]
Liang, Panpan [3 ]
Xie, Jia [4 ]
Wang, Yuan [6 ]
Gong, Jiayin [9 ]
Chen, Haiying [4 ]
Dai, Yangyang [8 ]
Yang, Lu [1 ]
Su, Xiaohong [1 ]
Wang, Anni [1 ]
Xiong, Lei [1 ]
Xia, Han [10 ]
Jiang, Ying [1 ]
Liu, Zifeng [2 ]
Peng, Fuhua [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Neurol, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Hosp 3, Big Data & Artificial Intelligence Ctr, Guangzhou 510630, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Lab, Guangzhou 510630, Guangdong, Peoples R China
[4] Jiangxi Chest Hosp, Dept Neurol, Nanchang 330000, Jiangxi, Peoples R China
[5] Cangshan Breach 900Th Hosp PLA Joint Serv Support, Dept Neurol, Fuzhou 350000, Fujian, Peoples R China
[6] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangdong Prov Key Lab Ophthalmol & Visual Sci, Guangzhou, Peoples R China
[7] Hebei Med Univ, Dept Neurol, Hosp 2, Shijiazhuang 050000, Peoples R China
[8] Guangdong 999 Brain Hosp, Dept Neurol, Guangzhou, Peoples R China
[9] Fujian Med Univ, Dept Neurol, Union Hosp, Xinquan Rd 29, Fuzhou 350001, Peoples R China
[10] Hugobiotech Co Ltd, Dept Sci Affairs, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Cryptococcal meningitis; Machine learning; Prediction model; Object detection; Cryptococcal count; COMBINED COHORT; AMPHOTERICIN-B; AIDS; MANAGEMENT; DIAGNOSIS; DISEASES; THERAPY;
D O I
10.1007/s10096-023-04653-2
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
PurposeTo predict prognosis in HIV-negative cryptococcal meningitis (CM) patients by developing and validating a machine learning (ML) model.MethodsThis study involved 523 HIV-negative CM patients diagnosed between January 1, 1998, and August 31, 2022, by neurologists from 3 tertiary Chinese centers. Prognosis was evaluated at 10 weeks after the initiation of antifungal therapy.ResultsThe final prediction model for HIV-negative CM patients comprised 8 variables: Cerebrospinal fluid (CSF) cryptococcal count, CSF white blood cell (WBC), altered mental status, hearing impairment, CSF chloride levels, CSF opening pressure (OP), aspartate aminotransferase levels at admission, and decreased rate of CSF cryptococcal count within 2 weeks after admission. The areas under the curve (AUCs) in the internal, temporal, and external validation sets were 0.87 (95% CI 0.794-0.944), 0.92 (95% CI 0.795-1.000), and 0.86 (95% CI 0.744-0.975), respectively. An artificial intelligence (AI) model was trained to detect and count cryptococci, and the mean average precision (mAP) was 0.993.ConclusionA ML model for predicting prognosis in HIV-negative CM patients was built and validated, and the model might provide a reference for personalized treatment of HIV-negative CM patients. The change in the CSF cryptococcal count in the early phase of HIV-negative CM treatment can reflect the prognosis of the disease. In addition, utilizing AI to detect and count CSF cryptococci in HIV-negative CM patients can eliminate the interference of human factors in detecting cryptococci in CSF samples and reduce the workload of the examiner.
引用
收藏
页码:1183 / 1194
页数:12
相关论文
共 39 条
[1]  
Abassi Mahsa, 2015, Curr Trop Med Rep, V2, P90
[2]   Independent Association between Rate of Clearance of Infection and Clinical Outcome of HIV-Associated Cryptococcal Meningitis: Analysis of a Combined Cohort of 262 Patients [J].
Bicanic, Tihana ;
Muzoora, Conrad ;
Brouwer, Annemarie E. ;
Meintjes, Graeme ;
Longley, Nicky ;
Taseera, Kabanda ;
Rebe, Kevin ;
Loyse, Angela ;
Jarvis, Joseph ;
Bekker, Linda-Gail ;
Wood, Robin ;
Limmathurotsakul, Direk ;
Chierakul, Wirongrong ;
Stepniewska, Kasia ;
White, Nicholas J. ;
Jaffar, Shabbar ;
Harrison, Thomas S. .
CLINICAL INFECTIOUS DISEASES, 2009, 49 (05) :702-709
[3]   Comparison and Temporal Trends of Three Groups with Cryptococcosis: HIV-Infected, Solid Organ Transplant, and HIV-Negative/Non-Transplant [J].
Bratton, Emily W. ;
El Husseini, Nada ;
Chastain, Cody A. ;
Lee, Michael S. ;
Poole, Charles ;
Stuermer, Til ;
Juliano, Jonathan J. ;
Weber, David J. ;
Perfect, John R. .
PLOS ONE, 2012, 7 (08)
[4]   Predictors of Mortality and Differences in Clinical Features among Patients with Cryptococcosis According to Immune Status [J].
Brizendine, Kyle D. ;
Baddley, John W. ;
Pappas, Peter G. .
PLOS ONE, 2013, 8 (03)
[5]   Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial [J].
Brouwer, AE ;
Rajanuwong, A ;
Chierakul, W ;
Griffin, GE ;
Larsen, RA ;
White, NJ ;
Harrison, TS .
LANCET, 2004, 363 (9423) :1764-1767
[6]  
Collins GS, 2015, ANN INTERN MED, V162, P735, DOI [10.7326/L15-5093-2, 10.7326/L15-5093]
[7]   Early clinical and microbiological predictors of outcome in hospitalized patients with cryptococcal meningitis [J].
de Oliveira, Lidiane ;
Carvalho Melhem, Marcia de Souza ;
Buccheri, Renata ;
Chagas, Oscar Jose ;
Vidal, Jose Ernesto ;
Diaz-Quijano, Fredi Alexander .
BMC INFECTIOUS DISEASES, 2022, 22 (01)
[8]   PROGNOSTIC FACTORS IN CRYPTOCOCCAL MENINGITIS - STUDY IN 111 CASES [J].
DIAMOND, RD ;
BENNETT, JE .
ANNALS OF INTERNAL MEDICINE, 1974, 80 (02) :176-181
[9]   Determinants of disease presentation and outcome during cryptococcosis:: The CryptoA/D study [J].
Dromer, Francoise ;
Mathoulin-Pelissier, Simone ;
Launay, Odile ;
Lortholary, Olivier .
PLOS MEDICINE, 2007, 4 (02) :297-308
[10]   Cryptococcosis and Cryptococcus [J].
Francisco, Elaine Cristina ;
de Jong, Auke W. ;
Hagen, Ferry .
MYCOPATHOLOGIA, 2021, 186 (05) :729-731