On the existence and Holder regularity of solutions to some nonlinear Cauchy-Neumann problems

被引:5
作者
Audrito, Alessandro [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, D Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Politecn Torino, DISMA, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
欧盟地平线“2020”;
关键词
Holder regularity; Uniform estimates; Nonlocal diffusion; Variational techniques; PARABOLIC EQUATIONS; HARNACK INEQUALITY; HEAT-EQUATION; DIFFUSION; SPACE;
D O I
10.1007/s00028-023-00899-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniform parabolic Holder estimates of De Giorgi-Nash-Moser type for sequences of minimizers of the functionals epsilon(epsilon) (w) =integral((X))(0) e(-t/epsilon) /epsilon { integral(N+1)(R+) y(a) (epsilon|partial derivative(t) W|(2)) + |del W|(2) )dX integral(N)(R)(x{0}) Phi(w) dx }dt, epsilon is an element of (0,1) where a. (-1, 1) is a fixed parameter, R-+(N+1) is the upper half-space and dX = dxdy. As a consequence, we deduce the existence and Holder regularity of weak solutions to a class of weighted nonlinear CauchyNeumann problems arising in combustion theory and fractional diffusion.
引用
收藏
页数:45
相关论文
共 46 条
[1]  
Akagi G, 2016, J CONVEX ANAL, V23, P53
[2]   On the regularity of the non-dynamic parabolic fractional obstacle problem [J].
Athanasopoulos, Ioannis ;
Caffarelli, Luis ;
Milakis, Emmanouil .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (06) :2614-2647
[3]  
Audrito A, 2020, Arxiv, DOI arXiv:1807.10135
[4]   A minimization procedure to the existence of segregated solutions to parabolic reaction-diffusion systems [J].
Audrito, Alessandro ;
Serra, Enrico ;
Tilli, Paolo .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (12) :2268-2287
[5]   The structure of the singular set in the thin obstacle problem for degenerate parabolic equations [J].
Banerjee, Agnid ;
Daniel, Donatelia ;
Garofalo, Nicola ;
Petrosyan, Arshak .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
[6]  
Banerjee Agnid, 2020, [Алгебра и анализ, Algebra i analiz], V32, P84
[7]   Monotonicity of generalized frequencies and the strong unique continuation property for fractional parabolic equations [J].
Banerjee, Agnid ;
Garofalo, Nicola .
ADVANCES IN MATHEMATICS, 2018, 336 :149-241
[8]   Parabolic equations and the bounded slope condition [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo ;
Signoriello, Stefano .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02) :355-379
[9]   Existence of evolutionary variational solutions via the calculus of variations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3912-3942
[10]   Quantitative a priori estimates for fast diffusion equations with Caffarelli-Kohn-Nirenberg weights. Harnack inequalities and Holder continuity [J].
Bonforte, Matteo ;
Simonov, Nikita .
ADVANCES IN MATHEMATICS, 2019, 345 :1075-1161