HRU-Net: High-Resolution Remote Sensing Image Road Extraction Based on Multi-Scale Fusion

被引:2
|
作者
Yin, Anchao [1 ]
Ren, Chao [1 ]
Yan, Zhiheng [1 ]
Xue, Xiaoqin [1 ]
Yue, Weiting [1 ]
Wei, Zhenkui [1 ]
Liang, Jieyu [1 ]
Zhang, Xudong [1 ]
Lin, Xiaoqi [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
基金
中国国家自然科学基金;
关键词
high-resolution remote sensing images; road extraction; shadow occlusion; spectral confusion; multi-scale fusion; NETWORK;
D O I
10.3390/app13148237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Road extraction from high-resolution satellite images has become a significant focus in the field of remote sensing image analysis. However, factors such as shadow occlusion and spectral confusion hinder the accuracy and consistency of road extraction in satellite images. To overcome these challenges, this paper presents a multi-scale fusion-based road extraction framework, HRU-Net, which exploits the various scales and resolutions of image features generated during the encoding and decoding processes. First, during the encoding phase, we develop a multi-scale feature fusion module with upsampling capabilities (UMR module) to capture fine details, enhancing shadowed areas and road boundaries. Next, in the decoding phase, we design a multi-feature fusion module (MPF module) to obtain multi-scale spatial information, enabling better differentiation between roads and objects with similar spectral characteristics. The network simultaneously integrates multi-scale feature information during the downsampling process, producing high-resolution feature maps through progressive cross-layer connections, thereby enabling more effective high-resolution prediction tasks. We conduct comparative experiments and quantitative evaluations of the proposed HRU-Net framework against existing algorithms (U-Net, ResNet, DeepLabV3, ResUnet, HRNet) using the Massachusetts Road Dataset. On this basis, this paper selects three network models (U-Net, HRNet, and HRU-Net) to conduct comparative experiments and quantitative evaluations on the DeepGlobe Road Dataset. The experimental results demonstrate that the HRU-Net framework outperforms its counterparts in terms of accuracy and mean intersection over union. In summary, the HRU-Net model proposed in this paper skillfully exploits information from different resolution feature maps, effectively addressing the challenges of discontinuous road extraction and reduced accuracy caused by shadow occlusion and spectral confusion factors. In complex satellite image scenarios, the model accurately extracts comprehensive road regions.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Method for Road Extraction from High-Resolution Remote Sensing Images Based on Multi-Kernel Learning
    Xu, Rui
    Zeng, Yanfang
    INFORMATION, 2019, 10 (12)
  • [22] ASPP+-LANet: A Multi-Scale Context Extraction Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Hu, Lei
    Zhou, Xun
    Ruan, Jiachen
    Li, Supeng
    REMOTE SENSING, 2024, 16 (06)
  • [23] MS-AGAN: Road Extraction via Multi-Scale Information Fusion and Asymmetric Generative Adversarial Networks from High-Resolution Remote Sensing Images under Complex Backgrounds
    Lin, Shaofu
    Yao, Xin
    Liu, Xiliang
    Wang, Shaohua
    Chen, Hua-Min
    Ding, Lei
    Zhang, Jing
    Chen, Guihong
    Mei, Qiang
    REMOTE SENSING, 2023, 15 (13)
  • [24] FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality
    Zhong, Bo
    Dan, Hongfeng
    Liu, Minghao
    Luo, Xiaobo
    Ao, Kai
    Yang, Aixia
    Wu, Junjun
    REMOTE SENSING, 2025, 17 (03)
  • [25] An road extraction method of high-resolution remote sensing image based on spatial information perception semantic segmentation model
    Wu Q.
    Wang S.
    Wang B.
    Wu Y.
    National Remote Sensing Bulletin, 2022, 26 (09) : 1872 - 1885
  • [26] Semi-automatic Road Extraction from High-resolution Remote Sensing Image: Review and Prospects
    Li, Yibo
    Xu, Lili
    Piao, Hui
    HIS 2009: 2009 NINTH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2009, : 204 - 209
  • [27] DDU-Net: Dual-Decoder-U-Net for Road Extraction Using High-Resolution Remote Sensing Images
    Wang, Ying
    Peng, Yuexing
    Li, Wei
    Alexandropoulos, George C.
    Yu, Junchuan
    Ge, Daqing
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images
    Cheng, Yong
    Wang, Wei
    Ren, Zhoupeng
    Zhao, Yingfen
    Liao, Yilan
    Ge, Yong
    Wang, Jun
    He, Jiaxin
    Gu, Yakang
    Wang, Yixuan
    Zhang, Wenjie
    Zhang, Ce
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [29] Road extraction of high-resolution satellite remote sensing images in U-Net network with consideration of connectivity
    Wang B.
    Chen Z.
    Wu L.
    Xie P.
    Fan D.
    Fu B.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (12): : 1488 - 1499
  • [30] Remote Sensing Image Road Extraction Network Based on MSPFE-Net
    Wei, Zhiheng
    Zhang, Zhenyu
    ELECTRONICS, 2023, 12 (07)