Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia

被引:9
作者
Ortega-Julia, Javier [1 ,3 ]
Ortega, Daniel [1 ,2 ,3 ]
Leliaert, Jonathan [4 ]
机构
[1] Fac Sci, Condensed Matter Phys Dept, Campus Univ Rio San Pedro s n, Cadiz 11510, Spain
[2] IMDEA Nanosci, Faraday 9, Madrid 28049, Spain
[3] Univ Cadiz, Inst Res & Innovat Biomed Sci Prov Cadiz INiB, Cadiz 11009, Spain
[4] Univ Ghent, Dept Solid State Sci, Ghent, Belgium
关键词
IRON-OXIDE NANOPARTICLES; FIELD; ABSORPTION; MORPHOLOGY; FREQUENCY;
D O I
10.1039/d3nr01269g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding and predicting the heat released by magnetic nanoparticles is central to magnetic hyperthermia treatment planning. In most cases, nanoparticles form aggregates when injected in living tissues, thereby altering their response to the applied alternating magnetic field and preventing the accurate prediction of the released heat. We performed a computational analysis to investigate the heat released by nanoparticle aggregates featuring different sizes and fractal geometry factors. By digitally mirroring aggregates seen in biological tissues, we found that the average heat released per particle stabilizes starting from moderately small aggregates, thereby facilitating making estimates for their larger counterparts. Additionally, we studied the heating performance of particle aggregates over a wide range of fractal parameters. We compared this result with the heat released by non-interacting nanoparticles to quantify the reduction of heating power after being instilled into tissues. This set of results can be used to estimate the expected heating in vivo based on the experimentally determined nanoparticle properties.
引用
收藏
页码:10342 / 10350
页数:9
相关论文
共 50 条
[41]   Effect of magnetic nanoparticle heating on cortical neuron viability [J].
Rivet, Christopher J. ;
Yuan, Yuan ;
Gilbert, Ryan J. ;
Borca-Tasciuc, Diana-Andra .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2014, 30 (02) :79-85
[42]   Optimization of cobalt ferrite magnetic nanoparticle as a theranostic agent: MRI and hyperthermia [J].
Mohammadi, Zahra ;
Montazerabadi, Alireza ;
Irajirad, Rasoul ;
Attaran, Neda ;
Abedi, Hormoz ;
Shaegh, Seyed Ali Mousavi ;
Sazgarnia, Ameneh .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2023, 36 (05) :749-766
[43]   Investigation of the magnetic hyperthermia effect in an aqueous dispersion of colloidosomal nanoparticle clusters [J].
Skumiel, Andrzej ;
Kertmen, Ahmet ;
Nowaczyk, Grzegorz .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 283 :91-95
[44]   Magnetic Hyperthermia Using Iron Oxides Nanoparticles [J].
Xu Huang-Tao ;
Ren Wei ;
Pan Yong-Xin .
PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2019, 46 (04) :369-378
[45]   Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia [J].
Albarqi, Hassan A. ;
Wong, Leon H. ;
Schumann, Canan ;
Sabei, Fahad Y. ;
Korzun, Tetiana ;
Li, Xiaoning ;
Hansen, Mikkel N. ;
Dhagat, Pallavi ;
Moses, Abraham S. ;
Taratula, Olena ;
Taratula, Oleh .
ACS NANO, 2019, 13 (06) :6383-6395
[46]   Recent Advances in Modulating Magnetic Nanoparticles for Improving Magnetic Hyperthermia Performance [J].
Jiang Xiao-Li ;
Wang Yan-Yun ;
Wang Ying-Ze ;
Yu Jing ;
Liu Xiao-Li .
PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2019, 46 (03) :248-255
[47]   Influence of magnetic interactions in iron oxide nanoparticle polymer composites on magnetism and induction heating [J].
Raczka, Theodor ;
Wolf, Andreas ;
Reichstein, Jakob ;
Stauch, Claudia ;
Schug, Benedikt ;
Muessig, Stephan ;
Mandel, Karl .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 598
[48]   Optimization of excitation field depending on magnetic nanoparticle parameters for magnetic hyperthermia under safety constraint [J].
Yoshida, Takashi ;
Enpuku, Keiji .
AIP ADVANCES, 2024, 14 (07)
[49]   Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia [J].
Khot, V. M. ;
Salunkhe, A. B. ;
Thorat, N. D. ;
Ningthoujam, R. S. ;
Pawar, S. H. .
DALTON TRANSACTIONS, 2013, 42 (04) :1249-1258
[50]   Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles [J].
Pimentel, B. ;
Caraballo-Vivas, R. J. ;
Checca, N. R. ;
Zverev, V. I. ;
Salakhova, R. T. ;
Makarova, L. A. ;
Pyatakov, A. P. ;
Perov, N. S. ;
Tishin, A. M. ;
Shtil, A. A. ;
Rossi, A. L. ;
Reiss, M. S. .
JOURNAL OF SOLID STATE CHEMISTRY, 2018, 260 :34-38