Deep Learning Approaches for Wildland Fires Using Satellite Remote Sensing Data: Detection, Mapping, and Prediction

被引:33
|
作者
Ghali, Rafik [1 ]
Akhloufi, Moulay A. [1 ]
机构
[1] Univ Moncton, Percept Robot & Intelligent Machines PRIME, Dept Comp Sci, Moncton, NB E1A 3E9, Canada
来源
FIRE-SWITZERLAND | 2023年 / 6卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
fire detection; fire mapping; fire spread; damage severity; smoke; wildfire; satellite; deep learning; DETECTION ALGORITHM; WILDFIRE DETECTION; TIME-SERIES; IMAGERY; SEGMENTATION; WELL;
D O I
10.3390/fire6050192
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Wildland fires are one of the most dangerous natural risks, causing significant economic damage and loss of lives worldwide. Every year, millions of hectares are lost, and experts warn that the frequency and severity of wildfires will increase in the coming years due to climate change. To mitigate these hazards, numerous deep learning models were developed to detect and map wildland fires, estimate their severity, and predict their spread. In this paper, we provide a comprehensive review of recent deep learning techniques for detecting, mapping, and predicting wildland fires using satellite remote sensing data. We begin by introducing remote sensing satellite systems and their use in wildfire monitoring. Next, we review the deep learning methods employed for these tasks, including fire detection and mapping, severity estimation, and spread prediction. We further present the popular datasets used in these studies. Finally, we address the challenges faced by these models to accurately predict wildfire behaviors, and suggest future directions for developing reliable and robust wildland fire models.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning
    Xie, Fengying
    Shi, Mengyun
    Shi, Zhenwei
    Yin, Jihao
    Zhao, Danpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3631 - 3640
  • [42] GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data
    Lu, Jian
    Fu, Hongkun
    Tang, Xuhui
    Liu, Zhao
    Huang, Jujian
    Zou, Wenlong
    Chen, Hui
    Sun, Yue
    Ning, Xiangyu
    Li, Jian
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [43] Compressed Remote Sensing by Using Deep Learning
    Mirrashid, Alireza
    Beheshti, Ali Asghar
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 549 - 552
  • [44] CLOUD DETECTION OF REMOTE SENSING IMAGES BY DEEP LEARNING
    Shi, Mengyun
    Xie, Fengying
    Zi, Yue
    Yin, Jihao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 701 - 704
  • [45] Review on remote sensing methods for landslide detection using machine and deep learning
    Mohan, Amrita
    Singh, Amit Kumar
    Kumar, Basant
    Dwivedi, Ramji
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (07)
  • [46] Deep learning for change detection in remote sensing: a review
    Bai, Ting
    Wang, Le
    Yin, Dameng
    Sun, Kaimin
    Chen, Yepei
    Li, Wenzhuo
    Li, Deren
    GEO-SPATIAL INFORMATION SCIENCE, 2023, 26 (03) : 262 - 288
  • [47] A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency
    Kang, Yoojin
    Jang, Eunna
    Im, Jungho
    Kwon, Chungeun
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2019 - 2035
  • [48] Forest Fires Detection using Deep Transfer Learning
    Yandouzi, Mimoun
    Grari, Mounir
    Idrissi, Idriss
    Boukabous, Mohammed
    Moussaoui, Omar
    Azizi, Mostafa
    Ghoumid, Kamal
    Elmiad, Aissa Kerkour
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 268 - 275
  • [49] SPATIOTEMPORAL CORRELATION MAPPING AND PREDICTION MODELING OF IRRADIANCE BASED ON SATELLITE REMOTE SENSING
    Wang F.
    Li N.
    Su Y.
    Sun Y.
    Yang H.
    Zhen Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (03): : 1 - 9
  • [50] Automated classification of remote sensing satellite images using deep learning based vision transformer
    Adegun, Adekanmi
    Viriri, Serestina
    Tapamo, Jules-Raymond
    APPLIED INTELLIGENCE, 2024, 54 (24) : 13018 - 13037