Deep Learning Approaches for Wildland Fires Using Satellite Remote Sensing Data: Detection, Mapping, and Prediction

被引:33
|
作者
Ghali, Rafik [1 ]
Akhloufi, Moulay A. [1 ]
机构
[1] Univ Moncton, Percept Robot & Intelligent Machines PRIME, Dept Comp Sci, Moncton, NB E1A 3E9, Canada
来源
FIRE-SWITZERLAND | 2023年 / 6卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
fire detection; fire mapping; fire spread; damage severity; smoke; wildfire; satellite; deep learning; DETECTION ALGORITHM; WILDFIRE DETECTION; TIME-SERIES; IMAGERY; SEGMENTATION; WELL;
D O I
10.3390/fire6050192
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Wildland fires are one of the most dangerous natural risks, causing significant economic damage and loss of lives worldwide. Every year, millions of hectares are lost, and experts warn that the frequency and severity of wildfires will increase in the coming years due to climate change. To mitigate these hazards, numerous deep learning models were developed to detect and map wildland fires, estimate their severity, and predict their spread. In this paper, we provide a comprehensive review of recent deep learning techniques for detecting, mapping, and predicting wildland fires using satellite remote sensing data. We begin by introducing remote sensing satellite systems and their use in wildfire monitoring. Next, we review the deep learning methods employed for these tasks, including fire detection and mapping, severity estimation, and spread prediction. We further present the popular datasets used in these studies. Finally, we address the challenges faced by these models to accurately predict wildfire behaviors, and suggest future directions for developing reliable and robust wildland fire models.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Deep Learning and Remote Sensing Data Analysis
    Zhang L.
    Li Y.
    Hou Z.
    Li X.
    Geng H.
    Wang Y.
    Li J.
    Zhu P.
    Mei J.
    Jiang Y.
    Li S.
    Xin Q.
    Cui Y.
    Liu S.
    1857, Editorial Board of Medical Journal of Wuhan University (45): : 1857 - 1864
  • [42] Deep Learning and Remote Sensing: Detection of Dumping Waste Using UAV
    Youme, Ousmane
    Bayet, Theophile
    Dembele, Jean Marie
    Cambier, Christophe
    BIG DATA, IOT, AND AI FOR A SMARTER FUTURE, 2021, 185 : 361 - 369
  • [43] Building Change Detection Using Deep Learning for Remote Sensing Images
    Wang, Chang
    Han, Shijing
    Zhang, Wen
    Miao, Shufeng
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (04): : 587 - 598
  • [44] Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data
    Panigrahy, S
    Sharma, SA
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1997, 52 (02) : 85 - 91
  • [45] Modeling and mapping sea surface gage height using satellite remote sensing data
    Suwal, Naresh
    Deng, Zhiqiang
    EARTH SCIENCE INFORMATICS, 2024, 17 (04) : 3271 - 3285
  • [46] Cropland prediction using remote sensing, ancillary data, and machine learning
    Katal, Nitish
    Hooda, Nishtha
    Sharma, Ashish
    Sharma, Bhisham
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [47] Mapping the daily progression of large wildland fires using MODIS active fire data
    Veraverbeke, Sander
    Sedano, Fernando
    Hook, Simon J.
    Randerson, James T.
    Jin, Yufang
    Rogers, Brendan M.
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2014, 23 (05) : 655 - 667
  • [48] Landslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning With Constrains
    Ye, Chengming
    Li, Yao
    Cui, Peng
    Liang, Li
    Pirasteh, Saeid
    Marcato, Jose, Jr.
    Goncalves, Wesley Nunes
    Li, Jonathan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 5047 - 5060
  • [49] Seafloor mapping using underwater remote sensing approaches
    Janowski, Lukasz
    Tegowski, Jaroslaw
    Montereale-Gavazzi, Giacomo
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [50] A Hybrid Metaheuristic and Deep Learning Approach for Change Detection in Remote Sensing Data
    Slimani, Yacine
    Hedjam, Rachid
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (05) : 9351 - 9356