Hopf bifurcation in a networked delay SIR epidemic model

被引:13
作者
Barman, Madhab [1 ]
Mishra, Nachiketa [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg Kancheep, Dept Math, Chennai 600127, India
关键词
Network; Epidemic model; Hopf bifurcation; Stability; NONLINEAR INCIDENCE; STABILITY; BEHAVIOR;
D O I
10.1016/j.jmaa.2023.127131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time delay networked Susceptible-Infectious-Recovered (SIR) epidemic model with a nonlinear incidence rate is considered on a graph of Laplacian diffusion. The model introduces population mobility through the graph network. Several stability theorems are proved at all possible different equilibrium points of the model. Further, Hopf bifurcation analysis for the endemic equilibrium is investigated. Numerical results are presented to support the theoretical findings. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 34 条
[2]  
Amen A.I., 2008, AL RAFIDEN J COMPUT, V5, P81
[3]   REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS .1. REGULATORY PROCESSES [J].
ANDERSON, RM ;
MAY, RM .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :219-247
[4]  
BROWN GC, 1995, J INVERTEBR PATHOL, V65, P10, DOI 10.1006/jipa.1995.1002
[5]   Epidemic model on a network: Analysis and applications to COVID-19 [J].
Bustamante-Castaneda, F. ;
Caputo, J-G ;
Cruz-Pacheco, G. ;
Knippel, A. ;
Mouatamide, F. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 564
[6]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[7]   Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population [J].
Derrick, WR ;
Van Den Driessche, P .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (02) :299-309
[8]  
Edelstein-Keshet L., 2005, MATH MODELS BIOL, DOI 10.1137/1.9780898719147
[9]  
FREEDMAN HI, 1983, B MATH BIOL, V45, P991, DOI 10.1016/S0092-8240(83)80073-1
[10]   Effects of quarantine in six endemic models for infectious diseases [J].
Hethcote, H ;
Ma, Z ;
Liao, SB .
MATHEMATICAL BIOSCIENCES, 2002, 180 :141-160