Facilitating deep learning through preprocessing of optical coherence tomography images

被引:4
作者
Li, Anfei [1 ]
Winebrake, James P. [1 ]
Kovacs, Kyle [2 ]
机构
[1] New York Presbyterian Hosp, Dept Ophthalmol, 1305 York Ave 11th floor, New York, NY 10021 USA
[2] Weill Cornell Med, Dept Ophthalmol, 1305 York Ave 11th floor, New York, NY 10021 USA
基金
英国科研创新办公室;
关键词
Deep learning; Machine learning; Preprocessing; Optical coherence tomography;
D O I
10.1186/s12886-023-02916-2
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
BackgroundWhile deep learning has delivered promising results in the field of ophthalmology, the hurdle to complete a deep learning study is high. In this study, we aim to facilitate small scale model trainings by exploring the role of preprocessing to reduce computational burden and accelerate learning.MethodsA small subset of a previously published dataset containing optical coherence tomography images of choroidal neovascularization, drusen, diabetic macula edema, and normal macula was modified using Fourier transformation and bandpass filter, producing high frequency images, original images, and low frequency images. Each set of images was trained with the same model, and their performances were compared.ResultsCompared to that with the original image dataset, the model trained with the high frequency image dataset achieved an improved final performance and reached maximum performance much earlier (in fewer epochs). The model trained with low frequency images did not achieve a meaningful performance.ConclusionAppropriate preprocessing of training images can accelerate the training process and can potentially facilitate modeling using artificial intelligence when limited by sample size or computational power.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
Armstrong Grayson W, 2020, Int Ophthalmol Clin, V60, P57, DOI 10.1097/IIO.0000000000000298
[2]   Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology [J].
Balyen, Lokman ;
Peto, Tunde .
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2019, 8 (03) :264-272
[3]   Cluster-based filtering framework for speckle reduction in OCT images [J].
Eybposh, M. Hossein ;
Turani, Zahra ;
Mehregan, Darius ;
Nasiriavanaki, Mohammadreza .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12) :6359-6373
[4]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[5]   A comprehensive survey of recent trends in deep learning for digital images augmentation [J].
Khalifa, Nour Eldeen ;
Loey, Mohamed ;
Mirjalili, Seyedali .
ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (03) :2351-2377
[6]  
Khosla Cherry, 2020, 2020 International Conference on Intelligent Engineering and Management (ICIEM), P79, DOI 10.1109/ICIEM48762.2020.9160048
[7]   Artificial intelligence to detect malignant eyelid tumors from photographic images [J].
Li, Zhongwen ;
Qiang, Wei ;
Chen, Hongyun ;
Pei, Mengjie ;
Yu, Xiaomei ;
Wang, Layi ;
Li, Zhen ;
Xie, Weiwei ;
Wu, Xuefang ;
Jiang, Jiewei ;
Wu, Guohai .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[8]  
Lin C-H, 2022, EPIDERMAL THICKNESS, DOI [10.1117/12.2613041, DOI 10.1117/12.2613041]
[9]   Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs [J].
Milea, D. ;
Najjar, R. P. ;
Zhubo, J. ;
Ting, D. ;
Vasseneix, C. ;
Xu, X. ;
Fard, M. Aghsaei ;
Fonseca, P. ;
Vanikieti, K. ;
Lagreze, W. A. ;
La Morgia, C. ;
Cheung, C. Y. ;
Hamann, S. ;
Chiquet, C. ;
Sanda, N. ;
Yang, H. ;
Mejico, L. J. ;
Rougier, M-B ;
Kho, R. ;
Thi Ha Chau, T. ;
Singhal, S. ;
Gohier, P. ;
Clermont-Vignal, C. ;
Cheng, C-Y ;
Jonas, J. B. ;
Yu-Wai-Man, P. ;
Fraser, C. L. ;
Chen, J. J. ;
Ambika, S. ;
Miller, N. R. ;
Liu, Y. ;
Newman, N. J. ;
Wong, T. Y. ;
Biousse, V .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1687-1695
[10]   Machine Learning Applications in Pediatric Ophthalmology AUTHORS [J].
Oke, Isdin ;
VanderVeen, Deborah .
SEMINARS IN OPHTHALMOLOGY, 2021, 36 (04) :210-217