共 36 条
A user-knowledge vector space reconstruction model for the expert knowledge recommendation system
被引:3
作者:
Gao, Li
[1
]
Liu, Yi
[2
]
Chen, Qing-kui
[2
]
Yang, He-yu
[2
]
He, Yi-qi
[3
]
Wang, Yan
[1
]
机构:
[1] Univ Shanghai Sci & Technol, Lib & Dept Comp Sci & Engn, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Dept Comp Sci & Engn, Shanghai 200093, Peoples R China
[3] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
关键词:
Vector space;
Pattern matching;
EKRS;
Lagrangian algorithm;
User-knowledge;
CLASSIFICATION;
D O I:
10.1016/j.ins.2023.03.025
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Expert Knowledge Recommendation System (EKRS) is an intelligent research assistance system. The system is formed by mapping two sets of conceptual spaces through Institutional Repository (IR) and Core Resource Dataset (CRD) in 2018. The user knowledge pattern matching (UKPM) of EKRS has problems such as uncertain user knowledge text matching, slow update of expert knowledge, and inability to accurately track user knowledge. This paper establishes a user knowledge vector space reconstruction model (UKVSM) through the following steps to solve the above problems. Firstly, the text feature items of IR and CRD are reconstructed and the depth and density correction coefficient matrix of the original node of the text semantic meaning is calcu-lated based on the similarity of feature items of the semantic layer. Secondly, in order to improve the efficiency of UKPM exact matching, the Lagrangian relaxation algorithm (LRA) is used to optimize the two sets of knowledge matching strategies. Finally, the real data set is extracted from the EKRS platform, and the model and algorithm proposed in this paper are tested and verified respectively, and compared with other methods. Experiments show that reconstruction model can improve the accuracy of user knowledge task assignment in EKRS, while LRA can improve the efficiency of model solving.
引用
收藏
页码:358 / 377
页数:20
相关论文